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Abstract16

We describe CATKE, a parameterization for fluxes associated with small-scale or “microscale”17

ocean turbulent mixing on scales between 1 and 100 meters. CATKE uses a downgradient18

formulation that depends on a prognostic turbulent kinetic energy (TKE) variable and19

a diagnostic mixing length scale that includes a dynamic convective adjustment (CA)20

component. With its dynamic convective mixing length, CATKE predicts not just the depth21

spanned by convective plumes but also the characteristic convective mixing timescale, an22

important aspect of turbulent convection not captured by simpler static convective adjustment23

schemes. As a result, CATKE can describe the competition between convection and other24

processes such as shear-driven mixing and baroclinic restratification. To calibrate CATKE,25

we use Ensemble Kalman Inversion to minimize the error between 21 large eddy simulations26

(LES) and predictions of the LES data by CATKE-parameterized single column simulations27

at three different vertical resolutions. We find that CATKE makes accurate predictions28

of both idealized and realistic LES compared to microscale turbulence parameterizations29

commonly used in climate models.30

Plain Language Summary31

Turbulence is everywhere in the Earth’s ocean, from ephemeral swirls no bigger than32

a fingertip to gigantic eddies larger than Iceland. Ocean models used in climate studies33

simulate currents by dividing the ocean into grid cells between 10 and 100 kilometers wide.34

As a result, ocean models do a decent job simulating eddies that are significantly larger than35

a single grid cell. But models do far worse at incorporating the effects of eddies that are36

person- to building-sized, which are smaller than a grid cell and therefore must be represented37

more approximately. This is a problem because these small yet mighty eddies mix heat38

and carbon deep into the ocean, and thus help keep the atmosphere from getting too hot,39

and too rich in CO2. In this paper, we propose a new model component called “CATKE’40

(pronounced kăt-kee) that approximately incorporates the effect of small eddies in global41

ocean models. CATKE stands for “Convective Adjustment and Turbulent Kinetic Energy”,42

and keeps track of the energy of small-scale turbulence — a measure of how vigorous it is,43

and thus how much it mixes the ocean — to predict ocean mixing rates.44

1 Introduction45

Vertical mixing by “microscale” ocean turbulence, with scales between 1 and 100 meters,46

is an important process affecting, for example, ocean uptake of atmospheric heat and47

carbon (Price et al., 1986; Large et al., 1994; Omand et al., 2015), the structure of the ocean48

interior (Luyten et al., 1983; Williams, 1991), and ocean circulation on decadal to millennial49

time-scales (Wunsch & Ferrari, 2004; Melet et al., 2022). In large-scale ocean models — from50

regional models covering tens of kilometers to global ocean models — microscale turbulent51

vertical fluxes are approximately modeled by parameterizations. Imperfect predictions by52

turbulence parameterizations contribute to biases in tropical sea surface temperature (G. Li53

& Xie, 2014), Southern Ocean boundary layer depth (Sallée et al., 2013; DuVivier et al.,54

2018), and water mass transformation rates (Groeskamp et al., 2019). These errors degrade55

the accuracy of climate projections that depend on accurate air-sea fluxes (sensitive to sea56

surface temperature, Large et al., 1994) and the effective heat capacity of the upper ocean57

(which scales with the boundary layer depth, Gregory, 2000; Held et al., 2010).58

This paper documents the development, calibration, and preliminary validation of a59

new parameterization for vertical mixing by ocean microscale turbulence. Our goal is to use60

the new parameterization in a GPU-based climate model that is automatically calibrated to61

observations, reports quantified uncertainties, and has an ocean component with O(10 km)62

or finer resolution that resolves ocean mesoscale turbulence. The dynamical core of the63

GPU-based ocean component is described by Silvestri, Wagner, Constantinou, et al. (2024).64

In service of this ultimate goal, the work documented in this paper prioritizes not just65
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accurate predictions, but also efficiency on GPUs in high-resolution configurations. We also66

invest in automated calibration that constrains all of the parameterization’s free parameters67

to 21 large eddy simulations (LESs) simultaneously, accounting for the peculiarities of our68

specific numerical implementation of the parameterization in a single column model. The69

21 LES we use to calibrate and the additional 14 LES we use to validate the parameterization70

are described in section 2. Uncertainty quantification, an important step for a future71

re-calibration that leverages global-scale observations, is left for future work.72

Our new parameterization, which we call “CATKE”, uses a downgradient formulation73

that estimates eddy diffusivities in terms of a prognostic turbulent kinetic energy (TKE)74

variable and a diagnostic mixing length with a novel dynamic convective adjustment (CA)75

component. CATKE is a “one-equation” model (because it includes an additional equation76

for TKE) that bears resemblance to a family of battle-tested parameterizations long used77

in European climate models (Gaspar et al., 1990; Blanke & Delecluse, 1993; Kuhlbrodt et78

al., 2018; Madec et al., 2017; Gutjahr et al., 2021; Jungclaus et al., 2022). One-equation79

downgradient parameterizations are appropriate for high-resolution ocean modeling and80

amenable to GPU performance optimization due to their spatially-local formulation. In81

contrast, the main feature of “K-profile” schemes used in many global ocean models —82

accommodating hours-long time steps (Reichl & Hallberg, 2018) by implicitly time-averaging83

mixing physics — does not benefit and may even degrade high-resolution simulations that84

resolve relatively fast mesoscale and submesoscale processes. Moreover, K-profile schemes85

achieve time-step flexibility by solving nonlinear algebraic equations for boundary layer86

depth (Large et al., 1994; Reichl & Hallberg, 2018; Reichl & Li, 2019), which may require87

significant optimization to achieve good performance on GPU-like systems (see by Zhang88

et al., 2020). As for two-equation “k–ϵ”-type models (Mellor & Yamada, 1982; Kantha &89

Clayson, 1994; Canuto et al., 2001; Umlauf & Burchard, 2003; Harcourt, 2015), or equations90

with even more than two prognostic variables (Garanaik et al., 2024; Legay et al., 2024),91

CATKE is less expensive merely by having one fewer prognostic variable. CATKE therefore92

serves as a high-performance, well-calibrated “baseline” whose accuracy must be met or93

surpassed to justify the use of more expensive or more expressive parameterizations.94

The downsides of downgradient parameterizations include unavoidable biases when non-95

local, non-downgradient fluxes dominate, such as during free convection (Large et al., 1994;96

Legay et al., 2024). We therefore devote special attention to free convection during CATKE’s97

formulation, which is described in section 3, to minimize this downgradient bias and assess its98

importance. Section 3.1.5 describes CATKE’s diagnostic convective length scale and primary99

novelty, which uses dimensional analysis (Deardorff, 1970) to estimate a dynamically evolving100

convective diffusivity in terms of the local TKE. This improves upon constant “convective101

adjustment” diffusivities typically used with one-equation parameterizations in ocean climate102

models (typically 0.1m2 s−1; Madec et al., 2017; Gutjahr et al., 2021; Jungclaus et al., 2022),103

which cannot describe how the convective mixing rate varies with both boundary layer depth104

and the intensity of the destabilizing surface buoyancy flux. As a result, CATKE might be105

able to represent scenarios where mixing competes with other dynamics such as submesoscale106

restratification. We also implement different mixing lengths for momentum, tracer, TKE,107

and the TKE dissipation rate in shear-driven turbulence that all vary as a function of the108

local gradient Richardson number. This contrasts with typical approaches that estimate109

the TKE diffusivity as a constant multiple of the eddy viscosity (Blanke & Delecluse, 1993;110

Madec et al., 2017; Umlauf & Burchard, 2003), or which allow only the tracer mixing length111

to vary with Richardson number (Blanke & Delecluse, 1993; Madec et al., 2017).112

CATKE’s formulation could not be realized without an effective method for constraining113

CATKE’s free parameters against observational or LES data. Section 4 describes how we114

use automatic, a posteriori calibration (Duraisamy, 2021; Frezat et al., 2022) to estimate115

CATKE’s free parameters by minimizing the error between 21 variously-forced LES and116

the predictions of the LES data made by forward CATKE-parameterized single column117

simulations. Because a posteriori calibration computes errors based on simulated time-series,118
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it can incorporate numerical errors that accumulate during time stepping and can leverage119

even indirect observational data if it can be computed from model output. For example, we120

leverage a posteriori calibration to specifically minimize CATKE’s dependence on vertical121

resolution. We solve the calibration problem using Ensemble Kalman Inversion (EKI; see122

Iglesias et al., 2013), which does not require gradients of the error with respect to free123

parameters. We argue that automatic, EKI-based, a posteriori calibration is crucial not only124

for CATKE’s development, but for any parameterization development effort that seeks the125

simplest possible model that can adequately simulate available data. Without automatic126

calibration, we cannot generally tell whether bias has to do with structural error — which127

can only be addressed by formulation changes, possibly increasing model complexity — or128

because of poorly chosen parameters, which does not justify increasing model complexity.129

We validate CATKE in various ways in section 5. We first diagnose quantities with130

known physical interpretations such as CATKE’s steady-state Richardson number and131

“similarity layer constant” (analogous to the von Kármán constant) in terms of CATKE’s132

calibrated free parameters, and assess their consistency with values reported in the literature.133

Second, we compare CATKE’s predictions versus idealized LES, both including those used134

in calibration and additional LES that are more strongly and more weakly forced than the135

calibration cases. In this way we test whether CATKE can reproduce the training data as136

well as CATKE’s capacity for extrapolation. Third, we compare CATKE predictions to LES137

of a long 34-day deep cycle turbulence case, which is forced by realistic winds, heat fluxes,138

salinity fluxes, solar insolation, and lateral flux divergences derived from a regional ocean139

model (Whitt et al., 2022). This case illustrates CATKE’s ability to extrapolate to cases140

with time-dependent forcing. Fourth, we evaluate the sensitivity of CATKE’s predictions to141

vertical resolution and time-step size. After finding that CATKE can be sensitive to time142

steps longer than 1 minute if the forcing is very strong and the vertical resolution is 1 meter143

or finer, we describe a split-explicit substepping scheme for TKE that nearly eliminates time144

step sensitivity while preserving the ability to step forward momentum and tracers with a145

relatively long time step.146

We also compare CATKE to the K-profile parameterization (KPP; Large et al., 1994)147

and the second-moment closure of Langmuir turbulence (Langmuir Turbulence Second148

Moment Closure, or “SMC-LT”; Harcourt, 2015), which are implemented in the General149

Ocean Turbulence Model (GOTM; see Umlauf & Burchard, 2005; Q. Li et al., 2019). CATKE150

outperforms both in almost all cases — though the results must be taken with a grain of salt,151

because both KPP and SMC-LT have been calibrated to different data. Despite this caveat,152

the comparison contributes context to CATKE’s small but finite biases versus constant153

forcing LES.154

In section 6, we conclude with a discussion about future efforts to calibrate CATKE155

against more comprehensive data sets, and model development efforts to capture physics not156

considered in this work, such as the effect of surface wave fields that vary independently from157

winds and the modulation of turbulence by lateral density fronts. The most important piece158

of future work is the construction of a global calibration context to further refine CATKE’s159

free parameters using satellite and in-situ ocean observations.160

2 Large eddy simulations of turbulent mixing beneath surface waves161

We begin by defining the parameterization problem that drives the cyclical process of162

formulating, calibrating, and validating CATKE. In this paper, the parameterization problem163

is posed by comparing high-fidelity and three-dimensional large eddy simulations (LES) of164

turbulent mixing with one-dimensional parameterized models for the horizontally-averaged165

dynamics of the LES. Our LES integrate the rotating, wave-averaged Boussinesq equations166

simplified for a steady surface wave field (Craik & Leibovich, 1976; Huang, 1979; Suzuki &167
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Fox-Kemper, 2016),168

∂tU
L +

(
UL · ∇

)
UL +

(
f ẑ −∇×US

)
×UL +∇P = B ẑ + ∂tU

S + F u , (1)169

∇ ·UL = 0 , (2)170

∂tC +
(
UL · ∇

)
C = −∇ · Jc + Fc , (3)171

where UL = (UL, V L,WL) is the Lagrangian-mean velocity, US is the Stokes drift associated172

with surface waves (which are always steady and oriented in the x̂-direction in this paper),173

P is Eulerian-mean kinematic pressure, B is Eulerian-mean buoyancy, f is the Coriolis174

parameter, F u is a momentum forcing term representing surface wind stress, C is any175

tracer such as temperature or salinity, and Fc is forcing term for C representing boundary176

conditions, solar insolation, and other imposed body forcing. The Lagrangian-mean velocity177

UL is defined as the sum of the Eulerian-mean velocity and Stokes drift, and setting US = 0178

reduces equation (1) to the ordinary Navier–Stokes equations. Note that we have neglected179

molecular diffusion from (1) and (3), as well as diffusion by a hypothetical LES closure, to180

simplify the ensuing discussion. In this work we use buoyancy B itself as a tracer, which is181

tantamount to using a linear equation of state with a single constituent.182

We conduct 35 LES of (1)–(3) forced by constant, horizontally-uniform fluxes of mo-183

mentum and buoyancy in a 512m× 512m× 256m horizontally-periodic domain with O(1m)184

resolution using Oceananigans (Ramadhan et al., 2020). Grid-scale dissipation of kinetic185

energy and tracer variance is implicitly provided by a Weighted, Essentially Non-Oscillatory186

(WENO, Shu, 2020) advection scheme. The advantages of this approach are described by187

Pressel et al. (2017). All 35 LES are initialized with the same piecewise-constant density188

stratification given in equation A1, which has a weakly-stratified near-surface layer, a more189

strongly stratified middle layer, and a weakly-stratified lower layer. The surface momentum190

flux or “wind stress” τx is defined via F u in (1) as191

F u = −∂z [τxH(z)] x̂ , where H(z)
def
=

{
1 if z ≥ 0
0 if z < 0

(4)192

is a Heaviside function. Negative stress τx < 0 forces a current in the +x-direction. Two193

types of buoyancy fluxes are used: a destabilizing surface flux Jb > 0 representing cooling or194

heat loss, which is defined via Fb in equation (3) via195

Fb = −∂z [JbH(z)] . (5)196

We also include 5 LES forced by both wind stress and stabilizing buoyancy forcing that197

represents heating by solar insolation. In these “sunny” cases, the flux divergence of buoyancy198

Fb is given by199

Fb = −∂zI , where I(z) = Jb

[
ϵ1e

z/λ1 + (1− ϵ1) e
z/λ2

]
. (6)200

In (6), I(z) is the buoyancy flux profile associated with penetrating solar insolation, Jb < 0201

is the surface solar insolation, ϵ1 is the fraction of penetrating radiation absorbed over the202

vertical scale λ1, and (1− ϵ1) is the remaining fraction absorbed over λ2. All simulations203

use ϵ1 = 0.6, λ1 = 1 m, and λ2 = 16 m (see for example the solar insolation used by Whitt204

et al., 2022).205

The LES are organized by duration into 6-, 12-, 24-, 48-, and 72-hour “suites”. Because206

all the LES are initialized identically and run until the boundary layer is roughly half the207

depth of the domain, duration indicates forcing strength: the 6-hour-suite are the most208

strongly forced and the 72-hour suite simulations are the most weakly forced. So that we can209

validate CATKE’s ability to extrapolate outside the training dataset, only intermediately-210

forced 12-, 24-, and 48-hour suites are used for calibration. The 35 LES are divided into 5211

“suites” with 7 cases each, according to their duration and the intensity of the surface fluxes:212
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the 6-hour suite exhibits extreme forcing, while the 72-hour suite exhibits relatively weak213

forcing. Each suite consists of 7 physical scenarios that represent different forcing regimes:214

• “free convection”, which has pure destabilizing buoyancy forcing and no winds,215

• “weak wind strong cooling”,216

• “medium wind medium cooling”,217

• “strong wind weak cooling”,218

• “strong wind”, with no buoyancy forcing,219

• “strong wind no rotation” with no buoyancy forcing and f = 0.220

• “strong wind and sunny” with penetrative heating, wind forcing, and f = 0.221

The “strong wind no rotation” and “strong wind and sunny” are non-rotating with f = 0,222

and the rest are rotating with Coriolis parameter f = 10−4 s−1. The range of buoyancy223

fluxes roughly corresponds to cooling between 156–2000 Wm−2 or heating by penetrating224

solar insolation between 104–1250 Wm−2, and the momentum fluxes correspond to 10-meter225

atmospheric winds of approximately 9–25 m s−1 and oriented in the x̂-direction. The fluxes226

associated with each case are summarized in tables 1 and 2.227

In any LES with wind forcing, we also include the effect of wind-driven surface waves228

through an estimate of ∂zU
S = ∂zU

S x̂ in (1) for equilibrium waves (Lenain & Pizzo, 2020).229

The equilibrium wave model depends on the peak wavenumber of the surface wave field,230

which is chosen so that the Langmuir number La is231

La
def
=

√
u⋆

US(z = 0)
≈ 0.3 , (7)232

close to the peak of its global distribution (Belcher et al., 2012). In (7), u⋆ is the friction233

velocity computed from the surface wind stress (here u⋆ =
√
|τx|, where τ = τx x̂ is the wind234

stress). All LES are initialized from rest with UL = 0. The LES also include a forced passive235

tracer, providing additional information about the time scales of mixing in the interior of236

the boundary layer. The initial density stratification, numerical methods, Stokes drift model,237

effects of including Stokes drift, and the sensitivity of the LES to resolution are described238

in Appendix A. Out of the 35 LES cases, 21 are used for calibration, while another 14 are239

reserved for validation. Figure 1 visualizes vertical velocity in 9 of the 35 cases.240

2.1 The single column context241

We would like to develop a model that can predict the horizontally-averaged momentum242

and buoyancy simulated by the LES. We therefore decompose all three-dimensional variables Ψ243

in (1)–(3) into a horizontally-averaged component ψ
def
= Ψ̄ and a fluctuation ψ′ such that,244

Ψ(x, y, z, t) = Ψ̄(z, t)︸ ︷︷ ︸
def
= ψ(z,t)

+ψ′(x, y, z, t) , (8)245

where the overline () denotes a horizontal average, and Ψ ∈ (UL, V L,WL, C) includes the246

velocity components UL, V L, WL, and tracer concentrations C. Note that the horizontal247

average of (2) and the horizontal homogeneity of our LES implies that wL = 0 and WL = w′
248

and thus the vertical momentum equation reduces to a statement of wave-modified hydrostatic249

balance. Figure 2 shows horizontally-averaged buoyancy, velocity, and kinetic energy profiles250

alongside a three-dimensional visualization of the buoyancy perturbation b′ for the 12-hour251

strong wind, weak cooling case.252

Next, we derive a set of equations that governs the horizontally-averaged zonal mo-253

mentum u(z, t), meridional momentum v(z, t), and any tracer c(z, t) by taking a horizontal254
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Suite Case Jb (m
2 s−3) |τx| (m2 s−2) Q

(
W
m2

)
u10

(
m
s

)
12 hour free convection +4.8× 10−7 0 +1000 0

12 hour weak wind strong cooling +4.0× 10−7 4.0× 10−4 +833 15

12 hour mid wind mid cooling +3.2× 10−7 6.0× 10−4 +667 17

12 hour strong wind weak cooling +2.0× 10−7 8.0× 10−4 +417 20

12 hour strong wind 0 9.0× 10−4 0 21

12 hour strong wind no rotation 0 6.0× 10−4 0 17

12 hour strong wind and sunny −5.0× 10−7 9.0× 10−4 −1042 21

24 hour free convection +2.4× 10−7 0 +500 0

24 hour weak wind strong cooling +2.0× 10−7 3.0× 10−4 +417 13

24 hour mid wind mid cooling +1.6× 10−7 4.5× 10−4 +333 16

24 hour strong wind weak cooling +1.0× 10−7 5.9× 10−4 +208 17

24 hour strong wind 0 6.8× 10−4 0 18

24 hour strong wind no rotation 0 3.0× 10−4 0 13

24 hour strong wind and sunny −3.0× 10−7 4.5× 10−4 −625 16

48 hour free convection +1.2× 10−7 0 +250 0

48 hour weak wind strong cooling +1.0× 10−7 2.0× 10−4 +208 11

48 hour mid wind mid cooling +8.0× 10−8 3.4× 10−4 +167 14

48 hour strong wind weak cooling +5.0× 10−8 3.8× 10−4 +104 15

48 hour strong wind 0 4.5× 10−4 0 16

48 hour strong wind no rotation 0 1.6× 10−4 0 10

48 hour strong wind and sunny −1.0× 10−7 2.0× 10−4 −208 11

Table 1. Summary of surface boundary conditions for LES used to calibrate CATKE. All LES

are initialized with the buoyancy profile described in equation (A1) and use the the traditional

f -plane approximation with Coriolis parameter f = 10−4 s−1, except “strong wind no rotation”

and “strong wind and sunny”, which omit Coriolis forces entirely. The “suite” indicates simulation

duration. Jb is the surface buoyancy flux, τx is the kinematic momentum flux (momentum flux

divided by ocean reference density), Q ≈ ρocpJb/(αg) is the heat flux associated with Jb, and u10 is

an estimate of the 10-meter wind speed associated with τx according to equation A5 using reference

density ρo = 1024 kgm−3, seawater heat capacity cp = 3991 J ◦C−1, thermal expansion coefficient

α = 2 × 10−4 ◦C−1, gravitational acceleration g = 9.81m s−2 are used for Q and u10. When the

surface buoyancy flux is negative (Jb < 0), Jb represents Jb = I(z = 0), where I(z) is the buoyancy

flux associated with penetrating solar insolation in equation 6. The forcing in equation (3) is then

defined as Fb = −∂zI. All fluxes use the convention that a positive flux carries quantities upwards,

out of the ocean, which means a negative τx drives currents in the + x̂ direction and a positive

buoyancy flux cools the ocean by extracting buoyancy. Additional LES used to validate CATKE are

summarized in table 2.
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Figure 1. Visualization of vertical velocity w in 9 of 35 large eddy simulations (LES) of the

ocean surface boundary layer used in this paper, forced variously by winds, surface waves, and heat

fluxes. All LES, which are summarized in tables 1 and 2 and described in more detail in Appendix

A, are initialized with the same density stratification. (a)–(c) show strongly-forced LES after just 6

hours of simulation, (d)–(f) show LES driven by medium-strength forcing after 24 hours, and (g)–(i)

show weakly forced LES after 72 hours. (a), (d), and (g) show a purely wind and wave driven case,

(b), (e), (h) are forced by a mixture of winds, waves, and cooling, and (c), (f), and (i) are “free

convection” cases forced only by cooling with no winds and waves. All simulations are rotating with

Coriolis parameter f = 10−4 s−1. The colorscale for each panel saturates at 1
2
max |w|. For each

panel, max |w| is (a) 0.26, (b) 0.29, (c) 0.086, (d) 0.20, (e) 0.23, (f) 0.070, (g) 0.056, (h) 0.14, and (i)

0.041 m s−1.

average of (1) and (3) to obtain,255

∂tu− fv = −∂zw′u′ + F̄u , (9)256

∂tv + fu = −∂zw′v′ + F̄v , (10)257

∂tc = −∂zw′c′ + F̄c , (11)258

where u, v represent the horizontal average of the horizontal Lagrangian-mean velocities UL,259

V L, and the superscript L is omitted to simplify notation. Lateral fluxes vanish from (9)–(11)260

due to horizontal homogeneity. No Stokes-drift-dependent terms enter into (9)–(11) because261

US(z) is horizontally uniform. Figure 2 illustrates the horizontally-averaged buoyancy,262

velocity, and turbulent kinetic energy for the 12-hour strong wind, weak cooling case.263

The parameterization problem may now be stated: we seek a parameterization that264

predicts the vertical fluxes w′u′, w′v′, and w′c′ in terms of the resolved state u, v, c, boundary265

conditions, and potentially, additional auxiliary variables. For example, the parameterization266
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Suite Case Jb (m
2 s−3) |τx| (m2 s−2) Q

(
W
m2

)
u10

(
m
s

)
6 hour free convection +9.6× 10−7 0 +2000 0

6 hour weak wind strong cooling +8.0× 10−7 5.0× 10−4 +1666 16

6 hour mid wind mid cooling +6.4× 10−7 8.0× 10−4 +1333 20

6 hour strong wind weak cooling +4.0× 10−7 1.2× 10−3 +833 23

6 hour strong wind 0 1.4× 10−3 0 24

6 hour strong wind no rotation 0 1.1× 10−3 0 22

6 hour strong wind and sunny −6.0× 10−7 1.5× 10−3 −1250 25

72 hour free convection +8.7× 10−8 0 +181 0

72 hour weak wind strong cooling +7.5× 10−8 1.8× 10−4 +156 11

72 hour mid wind mid cooling +6.0× 10−8 2.9× 10−4 +125 13

72 hour strong wind weak cooling +3.8× 10−8 3.4× 10−4 +79 14

72 hour strong wind 0 4.1× 10−4 0 15

72 hour strong wind no rotation 0 1.1× 10−4 0 9

72 hour strong wind and sunny −5.0× 10−8 1.3× 10−4 −104 9

Table 2. Summary of surface boundary conditions for LES used to validate CATKE. See table 1

for a description and a summary of the LES used to calibrate CATKE.

described in the next section uses a downgradient formulation w′c′ ∼ ∂zc to predict vertical267

tracer and momentum fluxes.268

2.2 Connection to the regional and global ocean modeling context269

Our LES, and the models that predict the horizontal average of the LES, may be270

described as “single column models”. This nomenclature reflects the notion that the models271

simulate the vertical redistribution of momentum and tracers by turbulent motions in a272

single column of a three-dimensional ocean model. Indeed, we envision that the single273

column context is generalized to a large-scale ocean simulation merely by adding advection274

by motions somewhat larger than the scale of the LES domain. This approach relies on two275

key assumptions. First, the microscale turbulence must be horizontally homogeneous so as to276

ignore lateral flux divergences. Second, there must be a scale separation between microscale277

turbulence and larger-scale motions so that interactions between the two can be ignored.278

For typical oceanic situations, the first assumption is likely satisfied because vertical279

gradients are much larger than horizontal ones on the scales of a “single column model” and280

thus the vertical flux divergences dominate over horizontal divergences. In other words the281

ocean is more homogeneous in the horizontal than in the vertical on scales of O(100 m).282

The second assumption is more problematic especially near the ocean surface and bottom283

boundaries. While microscale turbulence does not significantly interact with mesoscale284

geostrophic eddies with scales of O(10–100 km), there is growing evidence of interactions285

between submesoscale frontal dynamics with scales of O(100 m – 10 km) and microscale286

turbulence (see reviews by Thomas et al., 2008; McWilliams, 2016; J. R. Taylor & Thompson,287

2023). Frontal instabilities are also effective at restratifying the ocean boundary layers during288

time of weak microscale turbulence (see for example Boccaletti et al., 2007). These interactions289

are presently ignored in the formulation of microscale turbulence parameterizations, but290

they are an obvious direction for future development of CATKE. Following the approach291
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Figure 2. Illustration of horizontally-averaged data from the 12-hour strong wind, weak cooling

LES. Panel (a) shows the buoyancy perturbation b′. Note the colorbar is strongly saturated to

illustrate boundary layer structure; the buoyancy perturbation is particularly large at the base

of the boundary layer, where the horizontally-averaged buoyancy gradient is also strong. (b)

shows the horizontally-averaged buoyancy b, (c) shows the horizontally-averaged velocities u, v,

and (d) shows the horizontally-averaged fluctuation kinetic energy, E def
=

(
u′2 + v′2 + w′2

)
/2 and

horizontally-averaged vertical velocity variance, w′2.

outlined in this paper, such an effort will require generating a library of simulations which292

resolve microscale turbulence in the presence of ocean fronts, extending CATKE to include293

those physics, and then calibrating the extended CATKE against the new library of those294

simulations.295

Similarly, microscale turbulent mixing in the ocean interior requires considering multi-296

scale dynamics. For example, internal waves generated by surface winds and tide-bathymetry297

interactions produce a direct cascade of internal wave energy to progressively smaller scales298

until wave breaking finally transfers energy to microscale turbulence. Incorporating the299

physics of turbulent mixing driven by internal wave breaking is another area for future300

development.301

3 CATKE formulation302

CATKE models the horizontally-averaged vertical fluxes w′ψ′ appearing on the right303

side of (9)–(11) with a downgradient, mixing length formulation (Prandtl et al., 1925),304

w′ψ′ ≈ − ℓψ
√
e︸ ︷︷ ︸

def
=Kψ

∂zψ , (12)305

where e is the turbulent kinetic energy,
√
e is the turbulent velocity scale, and ℓψ is the306

mixing length for the horizontally-averaged variable ψ(z, t). After choosing to parameterize307

turbulent transport with eddy diffusion that depends on the turbulent velocity
√
e and308

mixing length ℓψ, the form Kψ = ℓψ
√
e follows from dimensional analysis. CATKE invokes309

three mixing lengths and three eddy diffusivities for horizontal velocities (ℓu and Ku), tracers310

(ℓc and Kc), and turbulent kinetic energy (ℓe and Ke).311
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With (12), the single column equations become312

∂tu− fv = ∂z (Ku∂zu) + F̄u , (13)313

∂tv + fu = ∂z (Ku∂zv) + F̄v , (14)314

∂tc = ∂z (Kc∂zc) + F̄c . (15)315

In this paper we use a linear equation of state that relates density to a single thermodynamic316

constituent, such that the buoyancy b is just another tracer,317

∂tb = ∂z (Kc∂zb) + F̄b . (16)318

The buoyancy gradient N2 def
= ∂zb appears in many of the scaling arguments central to319

CATKE’s formulation, where N is often referred to as the “buoyancy frequency”. Note that320

in more realistic simulations of seawater, b and N2 are functions of geopotential height, mean321

temperature, and mean salinity through the empirically-determined seawater equation of322

state (McDougall & Barker, 2011).323

Next we turn to the estimation of the turbulent kinetic energy e, and thus the turbulent324

velocity scale
√
e in (12). For this we first introduce the kinetic energy of the subgrid velocity325

field, E , defined in terms of the velocity fluctuations (u′, v′, w′),326

E def
= 1

2 |u′|2 = 1
2

(
u′2 + v′2 + w′2

)
. (17)327

We postulate a close relationship between e in (12) and the subgrid kinetic energy, E .328

However, this is a relationship rather than an identity, because E has contributions from329

motions that are unrelated to the eddy diffusivity in (12). For example, internal waves330

generated by convective plumes make a significant contribution to E below the base of331

boundary layer, despite that there is no mixing there. Moreoever, even if the kinetic energy332

and mixing length are known, a correlation coefficient is still required to compute the eddy333

diffusivity in (12) (G. I. Taylor, 1922). We therefore interpret e as a latent variable whose sole334

purpose is to enable accurate computation of the eddy diffusivity in (12), rather conflating e335

with the observable but less relevant quantity E . This interpretation has implications for336

calibration: we do not use discrepancy between LES-derived E and e to constrain CATKE’s337

free parameters. Instead, we only use the discrepancies between LES and model-predicted338

variables u, v, and c. CATKE’s e is therefore free to deviate from E if this produces more339

accurate eddy diffusivities and thus more accurate predictions of u, v, c. Interpreting e as a340

latent variable rather than as the subgrid kinetic energy E is also proposed by Kolmogorov341

(see Spalding, 1991) and Saffman (1970).342

Though we define e as a latent variable, we still expect similarity between e and E343

on physical grounds — where there is turbulence, there will be mixing — and following344

prior work (Saffman, 1970; Gaspar et al., 1990; Spalding, 1991; Umlauf & Burchard, 2003),345

use the evolution equation for E to formulate a model for the evolution of e. An equation346

describing the evolution of E can be derived from (1), including the molecular stress divergence347

ν∇2
(
UL −US

)
(we include the Stokes drift term here for completeness, though it does not348

contribute to the equation for E). The result is349

∂tE = − ∂z
(
w′E ′ + w′p′ − ν∂zE

)
︸ ︷︷ ︸

transport

− u′w′ · ∂zu︸ ︷︷ ︸
shear production

+ w′b′︸︷︷︸
buoyancy flux

− ν|∇u′|2︸ ︷︷ ︸
dissipation

, (18)350

where ν is the kinematic viscosity, p is kinematic pressure (dynamic pressure divided by a351

reference density) and E ′ = 1
2 |u

′|2 − E . Because u is the horizontally-averaged Lagrangian-352

mean velocity, the shear production term in (18) represents the total transfer of kinetic353

energy from the average u to the fluctuations u′, including the so-called “Stokes production”354

term (McWilliams et al., 1997). Again following prior work (Saffman, 1970; Gaspar et al.,355
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1990; Spalding, 1991; Umlauf & Burchard, 2003) we write the equation for e using terms356

that mirror each term in equation (18):357

∂te = ∂z (Ke∂ze)︸ ︷︷ ︸
transport

+ Ku|∂zu|2︸ ︷︷ ︸
shear production

− KcN
2

︸ ︷︷ ︸
buoyancy flux

− e3/2

ℓD︸︷︷︸
dissipation

, (19)358

where |∂zu|2 = (∂zu)
2 + (∂zv)

2 is the square vertical shear of the horizontally-averaged359

velocity field u (w = 0 because of horizontal homogeneity), Ke is the vertical diffusivity of e,360

ℓD is the “dissipation length scale”, and we have labeled the corresponding terms in (18)361

and (19). The shear production and buoyancy flux terms are formulated by applying the362

eddy diffusivity hypothesis (12) to their corresponding expressions in equation (18). Like in363

the budget for E , the shear production term in (19) represents the total shear production364

including both “Eulerian” and “Stokes” production.365

Even with perfect predictions of u, v, c — and therefore perfect shear production and366

buoyancy flux — E and e can still differ because of the approximate transport and dissipation367

terms in (19). In particular, we assume in (19) that the transport of e, which helps to368

deepen boundary layers by modeling turbulence spreading away from turbulence-generating369

regions, can be modeled with an eddy diffusivity Ke = ℓe
√
e. To model the dissipation of e370

we introduce the dissipation length scale ℓD, which has a similar form to the mixing lengths371

ℓu, ℓc, and ℓe. The expression e3/2/ℓD in (19) follows on dimensional grounds.372

Equation (19) requires boundary conditions. We impose a no-flux condition on e at373

the bottom. (Extending CATKE to describe the bottom boundary layer in the future may374

require imposing a different bottom boundary condition.) At z = 0, we parameterize subgrid375

production of e by wind stress and destabilizing buoyancy fluxes across the uppermost cell376

interface with377

Je
def
= −Ke∂ze

∣∣
z=0

= −Cshear
J u3⋆ − Cconv

J w3
∆ , where w3

∆
def
= ∆zmax(Jb, 0) , (20)378

and Cshear
J and Cconv

J are constant, non-dimensional free parameters, Jb is the surface379

buoyancy flux defined such that Jb > 0 removes buoyancy and thus causes convection, ∆z is380

the distance between the top of the ocean domain and the first interior cell interface, and381

w2
∆ is the convective TKE scale that follows from a balance between buoyant production382

and dissipation estimated using the grid spacing ∆z as a length scale. u⋆ in (20) is the383

ocean-side friction velocity,384

u⋆
def
=
(
τ2x + τ2y

)1/4
, (21)385

defined in terms of the zonal and meridional kinematic momentum fluxes τx and τy (wind386

stresses divided by reference water density). Note that other TKE-based models (Blanke &387

Delecluse, 1993; Madec et al., 2017) prescribe surface TKE (rather than TKE flux), and do388

not depend on the surface buoyancy flux Jb.389

Equation (20) introduces the notation390

Clabel
component (22)391

for two free parameters Cshear
J and Cconv

J , where “label” indicates the parameter’s role and392

“component” associates the parameter with a variable or model component.393

3.1 Turbulence length scale model394

We decompose the four length scales ℓψ ∈ (ℓu, ℓc, ℓe, ℓD) into a shear-dominated length395

scale ℓshearψ limited by density-stratification and surface distance, and a convection-dominated396

length scale ℓconvψ limited by the depth of the convective boundary layer. At any time and397

location, the maximum of these two length scales is chosen as the mixing length via398

ℓψ = max
(
ℓconvψ , ℓshearψ

)
, (23)399
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encapsulating a sharp separation between turbulence regimes. We next describe a length400

scale formulation that can be calibrated to predict turbulent fluxes associated with the kinds401

of flows plotted in figure 1.402

3.1.1 Shear turbulence length scale403

To represent shear-dominated turbulence, we use the length scale404

ℓshearψ = Sψ(Ri)min

(√
e

N+
,Csd

)
, where N2

+
def
= max (0, ∂zb) (24)405

with d the distance to the ocean surface, Cs a free parameter (“s” for “surface”), and Sψ406

a “stability function” defined below.
√
e/N is the vertical distance traversed by a patch of407

turbulence expending all its kinetic energy e to mix the uniform stratification N . Blanke408

and Delecluse (1993) point out that
√
e/N is a local approximation to the more complete409

but computationally-expensive length scale proposed by Gaspar et al. (1990).410

We use (24) for ℓshearc , ℓshearu , and ℓsheare . For the dissipation length scale ℓshearD , we use411

ℓshearD =
1

SD(Ri)
min

(√
e

N+
,Csd

)
, (25)412

so that the stability function for the dissipation length scale is 1/SD The alternative413

formulation in (25) yields a tight connection between SD’s free parameters and e dissipation,414

and facilitates the physical interpretation of CATKE’s parameters.415

The stability functions Sψ(Ri) and 1/SD(Ri) in (24)–(25) depend on the gradient416

Richardson number,417

Ri
def
=

∂zb

|∂zu|2
, (26)418

which means that each diffusivity Kψ also depends explicitly on Ri. More specifically, we419

hypothesize that Ku, Kc, and Ke are all explicit functions of |∂zu|2 in addition to N2, e,420

and the wall-distance d. CATKE is therefore more expressive than the closure described421

by Blanke and Delecluse (1993), wherein Ku and Ke do not depend explicitly on |∂zu|2.422

Second-moment closures also define Ku and Kc that depend on |∂zu|2, in addition to N2,423

e, and the dissipation rate ϵ (see, for example Burchard & Bolding, 2001). Ri-dependent424

stability functions also allow CATKE to capture, in some form, the well-known dependence425

between Ri and the turbulent Prandtl number (D. Li, 2019; C. Caulfield, 2021)426

Pr(Ri)
def
=

Ku

Kc
=

Su(Ri)
Sc(Ri)

. (27)427

We balance expressiveness and parsimony with four-part Sψ(Ri),428

Sψ(Ri) =


C−
ψ when Ri < 0 ,

C0
ψ when 0 ≤ Ri ≤ C0

Ri ,

C0
ψ +

(
C∞
ψ − C0

ψ

)
Ri−C0

Ri

CδRi
when C0

Ri < Ri < C0
Ri + CδRi ,

C∞
ψ when Ri ≥ C0

Ri + CδRi .

(28)429

In (28), the parameter C0
Ri is the “transition Ri”. The four regions of the stability function430

are:431

• Constant Sψ = C−
ψ for unstably-stratified shear turbulence with Ri < 0.432

• Constant Sψ = C0
ψ for near-neutral turbulence with 0 ≤ Ri ≤ C0

Ri433

• Linearly-varying from C0
ψ to C∞

ψ as Ri increases from C0
Ri to C0

Ri + CδRi.434

• Constant Sψ = C∞
ψ when high Ri > C0

Ri + CδRi.435
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The stability function (28) plays a similar role as the more elaborate stability functions used436

in two-equation models (Burchard & Bolding, 2001), which are derived from a second-moment437

closure. The stability functions in equation (28) are plotted in the left panel of figure 3 (see438

section 4 for how the parameters are obtained via calibration to LES). Note that the form of439

the stability functions in (28) imply that Pr is constant in the limit Ri→ 0 and Ri→ ∞,440

which Venayagamoorthy and Stretch (2010) argue is inconsistent with direct numerical441

simulation data. An extensive exploration of different formulations for Sψ is beyond the442

scope of the present work but remains an important direction for future research.443
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Figure 3. Stability functions (left panel), and Prandtl numbers and Schmidt numbers (right

panel), computed with parameters calibrated against large eddy simulations as described in section 4.

The stability functions for tracers, momentum, and TKE are given by Sψ in (28). The stability

function for dissipation length scale is 1/SD. The Prandtl number is Su/Sc and the Schmidt number

for TKE is Su/Se.

The four shear length scales introduce 15 free parameters: Cs, CδRi, and C0
Ri used in all444

four length scales, along with 12 additional parameters associated with the coefficients C−
ψ ,445

C0
ψ and C∞

ψ for each length scale respectively.446

3.1.2 Turbulent Prandtl and Schmidt numbers in stably stratified shear447

turbulence448

CATKE’s Pr in (27) is a rational function of Ri, slightly different from the piecewise449

linear formulation proposed by Blanke and Delecluse (1993) and Madec et al. (2017). In450

particular,451

Pr =



C−
u /C−

c Ri < 0

C0
u/C0

c 0 ≤ Ri ≤ C0
Ri

C0
u+µu(Ri−C0

Ri)
C0
c+µc(Ri−C0

Ri)
C0
Ri < Ri < C0

Ri + CδRi

C∞
u /C∞

c Ri ≥ C0
Ri + CδRi

, (29)452

where µψ
def
=
(
C∞
ψ − C0

ψ

)
/CδRi. Similarly, the Schmidt number for TKE transport in stably-453

stratified shear turbulence is Sc
def
= Ku/Ke. The Prandtl number and Schmidt number for454

calibrated parameters are visualized in the right panel figure 3.455
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3.1.3 Neutral, self-similar, wave-modulated, non-rotating, near-surface mix-456

ing457

To interpret CATKE’s mixing length near the surface in neutrally-stratified (∂zb = 0)458

conditions, when ℓψ ∼ d, we consider quasi-equilibrium (∂tu ≈ ∂te ≈ 0), non-rotating (f = 0)459

near-surface turbulence driven by wind stress τ = τx x̂. We suppose that the CATKE-460

parameterized single column equations (13)–(15) and (19) possess a similarity solution in461

this scenario (Von Kármán, 1931),462

∂zu ≈ u⋆
κ d

, (30)463

where u⋆ is the friction velocity defined in equation (21) (here simply
√

|τx|), d = −z is the464

distance to the surface, and κ is a constant parameter. If the ocean surface were rigid, κ465

could be interpreted as the von Kármán constant. But because the LES we use in this paper466

include surface wave effects, κ has a slightly different interpretation — as a “wave-modified”467

similarity layer constant, perhaps, as proposed by Samelson (2022).468

To express κ in terms of CATKE’s free parameters, we begin by assuming a balance469

between shear production and dissipation and neglecting diffusive turbulent transport to470

simplify (19) to471

Ku (∂zu)
2 ≈ e3/2

ℓD
. (31)472

Note that in neutral conditions,473

Ku = C0
uCsd

√
e , and ℓD =

Cs

C0
D

d . (32)474

Inserting (30) and (32) into (31) and rearranging, we find an expression that relates the475

constant κ, u⋆, and e,476

u2⋆
e

≈ κ2
C0
D

C0
u (Cs)

2 . (33)477

Notice that e is independent of d in this expression. This means that neglecting turbulent478

transport in (31) in the context of the similarity hypothesis (30) is self-consistent. Next,479

integrating the quasi-equilibrium x-momentum equation 0 ≈ ∂z (Ku∂zu) from z = 0 to480

z = −d yields481

∂zu ≈ u⋆
d

u⋆
C0
uCs

√
e︸ ︷︷ ︸

=1/κ

, (34)482

where we have used the neutral momentum diffusivity in (32) and the friction velocity483

definition −Ku∂zu|z=0 = u⋆. Equation (34) identifies κ by comparison to (30). We next484

use (33) to eliminate u⋆/
√
e and obtain an expression for CATKE’s wave-modified similarity485

layer constant κ,486

κ
def
= Cs

[(
C0
u

)3/C0
D

]1/4
. (35)487

3.1.4 Steady-state gradient Richardson number for stably stratified shear488

turbulence489

CATKE’s dependence on the stable length scale ℓ ∼
√
e/N is associated with a steady-490

state gradient Richardson number in stably-stratified shear turbulence (Blanke & Delecluse,491

1993). To see this, we first note that in stable stratification and far from boundaries, the492

mixing and dissipation length scales become493

ℓψ = Sψ
√
e

N
for ψ ∈ (u, c, e) and ℓD =

1

SD

√
e

N
. (36)494
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Inserting (36) into (19) and neglecting turbulent transport (equivalently, assuming spatially-495

uniform e) yields496

∂te = N(Sc + SD)

(
Ri†

Ri
− 1

)
︸ ︷︷ ︸

def
= r

e , (37)497

where r is a rate, and498

Ri†
def
=

Su
Sc + SD

. (38)499

When Ri = Ri†, the shear production of TKE is perfectly balanced by TKE destruction500

via buoyancy flux and dissipation, such that r = 0 and ∂te = 0. We therefore call Ri†501

the “steady-state Richardson number”. If Ri < Ri†, then TKE and mixing will increase,502

while if Ri > Ri† then TKE will decay and mixing will be suppressed. As a result — and503

as illustrated in section 5.3 and figure 12 — Ri is driven towards Ri† in forced stratified504

shear turbulence. Finally we note that the functions Sψ, defined in (28), depend on Ri.505

For example if Ri < C0
Ri, then Ri† = C0

u/
(
C0
c + C0

D

)
. But if Ri† > C0

Ri + CδRi, then506

Ri† = C∞
u / (C∞

c + C∞
D ).507

3.1.5 Convective turbulence length scale508

To formulate a length scale for free convection, we divide the freely convecting boundary509

layer into two regions: a “convecting layer” with unstable N2 < 0, and a “penetration510

layer” with thickness δ. In the penetration layer, N2(z) > 0 but N2(z + δ) < 0, where we511

note that the vertical coordinate z increases upwards and is defined such that z < 0. We512

use “penetration layer” rather than “entrainment layer” used by Deardorff (1970) to avoid513

confusion with lateral entrainment.) Our formulation for the convective length scale models514

both rapid mixing in the convective layer as well as entrainment into the boundary layer from515

below by plumes plunging through the convecting layer into the stably-stratified penetration516

layer below.517

Our dynamic length scale for mixing in the convective layer is based on a dimensional518

analysis first proposed by Deardorff (1970) that links the turbulent velocity
√
e (m s−1),519

surface buoyancy flux Jb (m
2/s3), and convective layer depth, h (m),520

√
e ∼ (hJb)

1/3
. (39)521

Recasting (39) in terms of a time-scale tmix ∼ h/
√
e for convective mixing over the depth h522

yields523

tmix ∼
(
h2

Jb

)1/3

. (40)524

But if we represent convection as a diffusive process with diffusivity Kc, then we also have525

that526

tmix ∼ h2

Kc
. (41)527

Equating (40) and (41) yields a scaling relation for the convective diffusivity Kc.528

Now consider convection driven by constant destabilizing buoyancy fluxes Jb and529

increasing h(t): according to (40), the mixing time then evolves according to tmix ∼ h2/3. On530

the other hand, if we instead we impose a constant Kc — a commonly used parameterization531

when N2 < 0 (Madec et al., 2017; Kuhlbrodt et al., 2018; Gutjahr et al., 2021; Jungclaus532

et al., 2022) — then (41) implies that, spuriously, tmix ∼ h2. Thus, constant convective533

adjustment diffusivities inaccurately exhibit tmix ∼ h2 and may produce bias when convection534

competes with other processes such as lateral restratification, or biogeochemical production535

and destruction.536
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To capture tmix consistently between (40) and (41) over the convective region where537

N2 < 0, we introduce a dynamic convective mixing length scale ℓhψ that scales with h,538

ℓhψ
def
= Chψ

e3/2

J̃b + Jmin
b

∼ h , (42)539

where Jmin
b is chosen small enough to have no impact on CATKE-parameterized solutions,540

and J̃b is an estimate of the slowly-evolving part of the buoyancy flux Jb averaged over541

time-scales t ∼ tmix. We compute J̃b by integrating542

∂tJ̃b =

(
Jb

ℓ2D(z = 0)

)1/3

︸ ︷︷ ︸
∼t−1

mix

(
Jb − J̃b

)
, (43)543

where ℓD is the dissipation length scale and (ℓ2D/Jb)
1/3 ∼ tmix scales with the instantaneous544

convective mixing time. Equation (43) relaxes J̃b to Jb over tmix. We use the dissipation545

length scale ℓD in (43) rather than a mixing length because we hypothesize that the convective546

turbulence evolution time-scale is most closely related to the time-scale for turbulent kinetic547

energy dissipation rather than a mixing time-scale. In quasi-equilibrium, J̃b ≈ Jb. Because548

ℓhψ ∼ h, CATKE’s convective tracer diffusivity scales with Kc ∼ h
√
e.549

The second objective of our convective mixing length formulation is to correctly predict550

the evolution of h. For this we introduce a model for “penetrative mixing” below the551

convective mixed layer associated with convective plumes that plunge through the mixed552

layer and penetrate into the strongly stratified region below. The “empirical law of convection”553

(Large et al., 1994; Siebesma et al., 2007; Van Roekel et al., 2018; Souza et al., 2020, 2023) is554

the observation, robust across a wide range of convective conditions, that penetrative fluxes555

at the penetration level zp scale with556

w′b′ |z=zp ∼ −Jb such that h2 ∼ Jbt

N2
, (44)557

for initially-constant buoyancy gradient N2 and constant buoyancy flux Jb.558

To ensure that CATKE reproduces (44), we introduce a “penetrative mixing length”,559

ℓpψ
def
= Cpc

J̃b
N2

√
e+ Jmin

b

, (45)560

which is applied within the aforementioned penetration layer at the depth zp, defined via561

N2(zp) > 0 and N2(zp + δ) < 0 , (46)562

where δ is the thickness of the penetration layer. At z = zp, (45) produces w′b′ = −ℓpc
√
eN2 ≈563

−CpcJb in accordance with the empirical law in (44). Our numerical implementation of the564

convective mixing length uses δ = ∆z where ∆z is the grid spacing at zp. This assumes that565

the entrainment layer is thinner than the grid spacing: when δ > ∆z, CATKE solutions may566

exhibit a “thin entrainment layer bias” even if the boundary layer deepening rate is correct.567

The scaling h ∼ e3/2/Jb is an overestimate when e is produced by both shear and568

convective buoyancy flux. Since the total mixing length ℓψ takes the maximum between569

the convective and shear mixing lengths, blending the length scales in a mixed turbulence570

regime requires a way to reduce the convective mixing length in the presence of significant571

shear production. For this purpose we introduce an estimate of the flux Richardson number572

in near-neutral conditions,573

R̃if
def
=

d
√
e|∂zu|2

J̃b + Jmin
b

, (47)574
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where d = −z is depth. R̃if in (47) measures the relative contribution of shear production575

(the numerator) versus buoyancy flux (the denominator) to the TKE budget in unstable576

stratification. We then use this estimate to reduce the convective mixing length by577

ϵsp
def
= max

(
0, 1− Csp R̃if

)
, (48)578

where Csp is a free parameter. The reduction factor (48) may also be interpreted as modeling579

how shear disrupts coherent plumes and thereby reduces convective turbulence correlation580

scales. Note that the numerator in (47) estimates shear production using the mixing length581

d, which is appropriate for shear-driven turbulent mixing. This formulation means that582

the free convection length scale is more limited at depth, where convective plumes are less583

connected to destabilizing surface buoyancy fluxes.584

Putting (42), (45), and (48) together yields the piecewise parameterization585

ℓconvψ (z) = ϵsp


ℓhψ if N2 < 0 and Jb > 0 ,

ℓpψ if N2 > 0 , N2(z +∆z) < 0 , and Jb > 0 ,

0 otherwise .

(49)586

Figure 4 illustrates the behavior of the convective length scale predicted by CATKE in (49)587

for three free convection cases with surface buoyancy fluxes Jb = 9.6× 10−7, 2.4× 10−7, and588

8.8× 10−8 m2 s−3 integrated for 6, 24, and 72 hours respectively, using the initial buoyancy589

profile in equation (A1), which is also used for all our LES. The parameters used to make590

figure 4 are automatically calibrated to large eddy simulations, as described in section 4.591

Figure 4(a) shows CATKE-simulated buoyancy profiles after integrating for 6, 24, and592

72 hours. Figure 4(b) shows that stronger forcing cases have greater levels of turbulent593

kinetic energy. Figure 4(c) shows the tracer mixing length, which above z = −100 meters is594

dominated by the convective mixing length. Though each case has different TKE and different595

surface buoyancy flux, they nevertheless predict similar tracer mixing lengths, corroborating596

the dimensional analysis in equation (39). (We also note that the mixing lengths are twice597

the boundary layer depth. We discuss this and other possible biases in free convection598

further in section 4.) Figure 4(d) shows the eddy diffusivity for the three cases — unlike a599

typical constant-diffusivity convective adjustment model, CATKE’s “convective adjustment600

diffusivity” varies depending on the strength of the surface buoyancy flux. Because the601

predicted mixing length is similar for all three cases, the tracer diffusivity varies with the602

surface buoyancy flux due to variation in the turbulent kinetic energy.603

4 A posteriori calibration against large eddy simulations604

We calibrate CATKE’s 23 free parameters in an a posteriori (Duraisamy, 2021; Frezat et605

al., 2022) single-column context using horizontally-averaged data from 21 LES described in606

section 2 and Appendix A. A posteriori calibration estimates free parameters by minimizing607

the error between LES data — b(z, t), u(z, t), v(z, t), and the forced passive tracer c(z, t)608

extracted from solutions of (1)–(3) — and single column simulations of b, u, v, and c in (13)–609

(15) that use CATKE as a parameterization. The minimization is computed over the whole610

time series and thus in a posteriori calibration free parameters are determined by directly611

minimizing simulation bias. In this way, a posteriori calibration incorporates numerical and612

other errors that accumulate during a simulation. Moreover, a posteriori calibration can613

leverage any observational data computable from the predicted solution, even only indirectly614

informative data. For example, in this work we calibrate elements of the TKE equation615

using only horizontally-averaged momentum and buoyancy profiles derived from LES.616

4.1 The importance of a posteriori calibration617

Explicitly minimizing simulation bias distinguishes a posteriori calibration from other618

methods that minimize other biases that are only indirectly related to simulation bias619
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Figure 4. CATKE mixing length and eddy diffusivity during free convection for three cases with

boundary layer depth h ≈ 100 m. (a) CATKE-predicted buoyancy profiles for the three cases, (b)

profiles turbulent kinetic energy, e, (c) tracer mixing lengths ℓc, (d) tracer eddy diffusivities Kc. The

buoyancy fluxes Jb correspond to heat fluxes Q ≈ 2000, 500, and 183 Wm−2 using Q ≈ ρocpJb/αg

and ρo = 1024 kgm−3, cp = 3991 J ◦C−1, α = 2× 10−4 ◦C−1, and g = 9.81m s−2.

— for example by attempting to compute free parameters directly from data, usually by620

considering subcomponents of the parameterization in isolation (examples may be found in621

Umlauf & Burchard, 2003; Reichl & Li, 2019). These latter methods are called “a priori”622

(Duraisamy, 2021), because they hinge on additional (often problematic) hypotheses — such623

as an assumption of structurally perfect, unbiased parameterization (permitting a direct624

computation of free parameters from limited data), or an assumption that free parameters625

are uncorrelated with one another (permitting free parameters to be determined in isolated626

contexts, rather than leveraging all data simultaneously).627

To illustrate the pitfalls of a priori calibration, we consider integrating a CATKE-628

parameterized single column equation for buoyancy b,629

∂tb = −∂z J (b;C)︸ ︷︷ ︸
CATKE

+ ξ︸︷︷︸
noisy error

. (50)630

In (50), we include two terms: (i) the divergence of a parameterized flux J that depends631

on both the simulated buoyancy b (omitting here for simplicity other aspects of the state632

such as u or v) and a set of free parameters C, and (ii) an explicit “error” term ξ that633

represents spatial and temporal discretization errors. We additionally define the ideal or634

“perfect” solution as b̂. When equation (50) is integrated forward to predict the evolution635

of b, fluctuations away from the perfect solution b̂ inevitably develop due both to structural636

errors in J and because of the discretization error ξ, leading to an error = b− b̂ that grows637

as
√
t (see, for example Gardiner, 2021).638

This error accumulation is potentially fatal for a-priori-calibrated parameterizations:639

because the parameters C are determined by evaluating J (b̂) in terms of the perfect b̂, while640

the predictions J (b) made in terms of the noisy b are unconstrained by the calibration641

procedure. At best, the unconstrained predictions J (b) are inaccurate. At worst, however,642

the errors J (b)−J (b̂) self-amplify without bound, thwarting prediction altogether (Rasp et643

al., 2018; Brenowitz & Bretherton, 2019; Rasp, 2020).644

A posteriori calibration avoids all of these pitfalls by definition, since J (b,C⋆) computed645

in terms of the simulated b and optimal parameters C⋆ is explicitly constrained by minimizing646

the discrepancy between J (b,C) and data. Put differently: a posteriori calibration “teaches”647

J how to make accurate, stable predictions in terms of potentially noisy inputs b. We648
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leverage this feature to realize a key innovation of this work: we explicitly minimize spatial649

discretization error by including single-column simulations with 2-, 4-, and 8-meter resolution650

in our loss function.651

4.2 Ensemble Kalman Inversion for a posteriori calibration652

To solve the nonlinear inverse problem posed by a posteriori calibration, we use an653

ensemble-based method called Ensemble Kalman Inversion (EKI; Iglesias et al., 2013). An654

advantage of EKI is that it is gradient-free, requiring only the ability to run an ensemble of655

simulations with different parameters. The EKI algorithm can be construed either as the656

integration of a dynamical system or as an iterative scheme for repeatedly refining an initial657

distribution of free parameter values.658

EKI minimizes the objective function659

Φ(G,Y;C) def
=
∥∥M−1/2 [G(C)− Y]

∥∥2 , (51)660

where Y denotes a vector of observational data, G(C) denotes a parameterized prediction of661

the observations made with a set of free parameters C, and M is a matrix that represents the662

uncertainty of Y . Φ measures the discrepancy between G(C) and Y given uncertainty M. The663

data Y is extracted from 21 of the LES described in table 1 that have intermediate surface664

forcing, each coarse-grained three times to 2-, 4-, and 8-meter vertical resolution, respectively.665

G is constructed by assembling 21 × 3 = 63 single column simulations, representing a666

prediction of each of the 21 LES cases at the three vertical resolutions.667

We note that the near-surface dynamics in the LES seem uncertain. For example, the668

LES profiles exhibit strong unstable near-surface buoyancy gradients for strongly-forced669

convective cases, indicating that turbulent mixing is suppressed near the top of the LES670

domain. These features are robust to changes in LES resolution (see Appendix A) and671

may represent real physics, since the scale of turbulent motions is restricted by proximity672

to the ocean surface. However, it is also plausible that the LES are missing important673

mixing processes near a wavy, bubbly, broken ocean surface, such as wave breaking, or674

unresolved surface-wave-turbulence interactions. We therefore omit the top 4 meters of the675

LES domain from the data vector Y, and thereby avoid overconstraining parameters with676

the most uncertain elements of the LES data.677

EKI finds a set of optimal parameters C = C⋆ that minimize Φ(G,Y,C) in (51) by678

evolving an ensemble of parameter sets using the algorithm described in Appendix C. In679

this work we use relatively large ensembles with 1000 members. This means that every EKI680

iteration requires 21× 3× 1000 = 63, 000 single column simulations, for 21 LES cases and 3681

vertical resolutions. To make the calibration as efficient as possible, we implement CATKE682

in Oceananigans and leverage a feature that permits us to integrate an ensemble of single683

column models in parallel in the configuration of a single three-dimensional simulation on684

a GPU. As a result, each EKI iteration requires evolving 9 effectively three-dimensional685

simulations (3 resolutions for each of the 12-, 24- and 48-hour suites). On an Nvidia Titan686

V GPU and with 1,000 ensemble members, a single EKI iteration takes 40-50 seconds,687

and the entire calibration takes 4-6 hours. In the course of this work we have performed688

complete calibrations of CATKE’s parameters hundreds of times — to experiment with new689

formulations, new numerical schemes, and to tweak the calibration setup. This workflow690

represents a new “calibration-based” paradigm in parameterization development, where691

physical formulation or numerical implementation changes are tested against the baseline by692

comparing predictions for independently calibrated parameterizations. The 23 calibrated693

free parameters that correspond to the version of CATKE described in this paper and the694

previously described LES are listed in table 3.695
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Symbol Description Optimal value Bounds

Cshear
J Wind stress TKE surface flux 3.18 (0, 8)

Cconv
J Convective TKE surface flux 0.38 (0, 8)

Cs Near-surface mixing scale 1.13 (0, 2)

Chc Tracer free convection scale 4.79 (0, 8)

C−
c Tracer mixing for negative Ri 0.57 (0, 2)

C0
c Tracer mixing for near-neutral Ri 0.37 (0, 2)

C∞
c Tracer mixing for high Ri 0.098 (0, 2)

Cpc Tracer free entrainment scale 0.11 (0, 2)

Chu Momentum free convection scale 3.71 (0, 8)

C−
u Velocity mixing for negative Ri 0.37 (0, 2)

C0
u Velocity mixing for near-neutral Ri 0.36 (0, 2)

C∞
u Velocity mixing for high Ri 0.24 (0, 2)

Che TKE free convection scale 3.64 (0, 10)

C−
e TKE transport for negative Ri 1.44 (0, 10)

C0
e TKE transport for near-neutral Ri 7.86 (0, 10)

C∞
e TKE transport for high Ri 0.55 (0, 10)

ChD Dissipation free convection scale 3.25 (0, 10)

C−
D Dissipation scale for negative Ri 0.92 (0, 10)

C0
D Dissipation scale for near-neutral Ri 1.60 (0, 10)

C∞
D Dissipation scale for high Ri 0.58 (0, 10)

C0
Ri Stability function transitional Ri 0.25 (0, 2)

CδRi Stability function Ri width 1.02 (0, 2)

Csp Sheared plume scale 0.50 (0, 2)

Table 3. A summary of CATKE’s free parameters. Note that “near-neutral Ri” means Ri ≤ C0
Ri,

while “high Ri” means Ri ≥ C0
Ri + CδRi. The bounds limit the values a parameter can take during

calibration, using the method described in C3. The prior distributions for each parameter span the

range between the bounds.
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5 Validation696

We next assess CATKE’s ability to make accurate predictions in a single column697

context with the free parameters listed in table 3. First, we derive quantities with well-698

understood physical interpretations from CATKE’s free parameters, and evaluate whether699

their calibrated values are close to values reported in the literature. Second, we compare700

CATKE-parameterized simulations both to the 21 constant-forcing LES used for calibration701

and to an additional 12 constant-forcing LES that are both more strongly and more weakly702

forced than the calibration LES. Third, we conduct a 34-day CATKE-parameterized simula-703

tion of equatorial deep-cycle turbulence using the dataset provided by Whitt et al. (2022),704

and then compare the results to the LES used therein. This third validation context is useful705

because it involves both time-dependent surface forcing, solar insolation, and lateral flux706

divergences derived from a high resolution tropical GCM. Finally, we evaluate CATKE’s707

sensitivity to vertical resolution and time-step size. These all provide a measure of confidence708

in CATKE’s ability to not only represent the LES data used for calibration but also to709

extrapolate to differently-forced conditions, time-dependent surface forcing, and GCM-like710

contexts that include interactions with other parameterizations and lateral flux divergences711

from for example, the advection of momentum, temperature, and salinity. All of this said, we712

maintain a caveat that CATKE should still be assessed, and likely recalibrated, in a regional713

or global context involving lateral fluxes and interactions with other model components.714

5.1 Derived quantities715

Table 4 shows several quantities that can be derived or computed in terms of CATKE’s716

calibrated free parameters. There is unknown uncertainty in these estimates, so the precise717

values must be taken with a grain of salt. Uncertainty quantification, using the methodology718

proposed by Cleary et al. (2021) for example, is left for future work.719

5.1.1 Steady-state Richardson number720

Section 3.1.4 shows how a steady-state Ri may be derived from CATKE’s TKE equation.721

From the parameters in table 3, we find that722

Ri†
def
=

C0
u

C0
c + C0

D

≈ 0.18 , (52)723

which lies in the “near-neutral” stability function regime, since C0
Ri = 0.25 > Ri†. Ri† = 0.18724

is somewhat less than the 0.23 used by Blanke and Delecluse (1993), or the value Ri = 1/4725

that determines the stability of a laminar stratified shear layer. In section 5.3, we find that726

Ri† is a crucial parameter controlling mixing in forced stably-stratified turbulence, and that727

LES tend to exhibit Ri in the range 0.2–0.23.728

5.1.2 Near-surface similarity constant729

Section 3.1.3 shows how a near-surface similarity constant — analogous to the von730

Kármán constant for turbulence near rigid non-wavy walls — may be computed from the731

near-wall and momentum stability function parameters. From table 3 and equation (35) we732

find that733

κ = Cs
[(
C0
u

)3/C0
D

]1/4
≈ 0.47 , (53)734

which is slightly higher than the rigid-wall von Kármán constant value of 0.4. A slightly735

higher similarity constant is consistent with the notion that surface waves act to increase736

the coherence of turbulent motions, which increases mixing lengths and suppresses turbulent737

kinetic energy dissipation.738

A similar wave-induced enhancement to the similarity constant is proposed by Samelson739

(2022). However, Samelson (2022) models the enhancement as a function of wind at ten740
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meters height, u10. In our case, the LES are forced with varying u10, but constant Langmuir741

number La ≈ 0.3 (see table 1 for a summary of the LES cases). Thus we must either742

hypothesize that surface waves can be modeled with a La-dependent enhancement of κ, or743

that CATKE is missing physics. We are unable to proceed further in determining wave-744

induced enhancements to κ without LES that vary La, so we save such considerations for745

future work.746

5.1.3 The turbulent Prandtl number747

The turbulent Prandtl number is defined as748

Pr
def
=

Ku

Kc
, (54)749

which is derived for CATKE in section 3.1.1. For various regimes of turbulence we obtain750

• Prc ≈ 0.77 for weakly-sheared convection,751

• Pr− ≈ 0.65 for unstably-stratified shear turbulence,752

• Pr0 ≈ 0.98 for near-neutral shear turbulence,753

• Pr∞ ≈ 2.46 for strongly-stratified shear turbulence.754

A turbulent Pr that increases from less than unity to above unity as Ri crosses zero is755

consistent with laboratory and DNS studies (for example, D. Li, 2019), as well as typical756

two-equation models (for example, Burchard & Bolding, 2001). On the other hand, one-757

equation models (Blanke & Delecluse, 1993; Madec et al., 2017) often prescribe Pr to a758

value of 10 or higher as Ri tends to infinity. It is unlikely that our boundary layer LES are759

informative for such high Ri mixing, so more LES are needed to assess and perhaps refine760

CATKE’s stability function to capture very high Ri regimes.761

5.1.4 The turbulent Schmidt number762

Calibration determines that Sc = 0.26 for unstably-stratified shear turbulence with763

Ri < 0, and then varies between 0.046 < Sc < 0.44 as Ri increases from 0 to C0
Ri+CδRi. As a764

result, TKE is transported much more rapidly than momentum or tracers in shear-dominated765

turbulence, and similarly to momentum or tracers in convective or weakly-sheared stratified766

turbulence. Rapid TKE diffusion relative to momentum or tracer diffusion introduces an767

“implicitly non-local” element to CATKE’s mixing predictions, because TKE transport can768

generate mixing in a region that is displaced from the region of TKE generation.769

5.1.5 Stratified turbulence mixing coefficient770

The “mixing coefficient” — the ratio between buoyancy flux and dissipation in stably-771

stratified turbulence (Gregg et al., 2018; C.-c. P. Caulfield, 2020) — measures the relative772

level of TKE converted to potential energy in the process of mixing buoyancy vs TKE773

dissipation. Using (19) and assuming stably-stratified turbulence far from boundaries such774

that ℓc = Sc
√
e/N , ℓD =

√
e/(SDN), and Kc = Sce/N , we find that775

Γ
def
= −buoyancy flux

dissipation
=

Sc
SD

. (55)776

The free parameters in table 3 imply that the mixing coefficient Γ varies between Γ0 ≈ 0.26777

for near-neutral turbulence and Γ∞ ≈ 0.17 for strongly-stratified (shear-free) turbulence.778

The latter is applicable to internal wave breaking, where an extensive literature suggests779

that Γ∞ ≈ 0.2 (Gregg et al., 2018).780
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Symbol Value Description

Ri† 0.18 Steady-state gradient Richardson number

κ 0.47 Near-neutral near-surface similarity constant

Pr0 0.98 Near-neutral turbulent Prandtl number (Ri→ 0)

Pr∞ 2.46 Strongly-stratified turbulent Prandtl number (Ri→ ∞)

Pr− 0.65 Unstably-stratified shear turbulence Prandtl number (Ri < 0)

Prc 0.77 Free convection turbulent Prandtl number (Ri→ −∞)

Γ0 0.23 Near-neutral mixing coefficient (Ri→ 0)

Γ∞ 0.17 Strongly-stratified mixing coefficient (Ri→ ∞)

Sc0 0.046 Near-neutral turbulent TKE Schmidt number (Ri→ 0)

Sc∞ 0.44 Strongly-stratified turbulent TKE Schmidt number (Ri→ ∞)

Sc− 0.26 Unstably-stratified shear turbulence TKE Schmidt number (Ri < 0)

Scc 1.02 Free convection turbulent TKE Schmidt number (Ri→ −∞)

Table 4. A summary of parameters and non-dimensional numbers derived from CATKE’s cali-

brated free parameters.

5.2 Validation against constant-forcing LES and comparison with other781

parameterizations782

In this section, we validate CATKE’s ability to make predictions both within and outside783

the range of surface forcings used for calibration. To add context to this validation exercise784

and connect with other studies, we include a comparison with predictions from the K-profile785

parameterization (KPP; Large et al., 1994), and the “Langmuir turbulence” second-moment786

closure (SMC-LT) described by Harcourt (2015), whose results depend additionally on the787

Stokes drift profile we used for LES. All simulations, including those with KPP and SMC-LT,788

use staggered vertical grids with 128 cells, in a 256-meter deep domain with 2-meter vertical789

resolution. We use a 2-minute time step for CATKE and KPP, and a 1-second time-step for790

SMC-LT. Such a short time-step was used for SMC-LT because we observed that the results791

were sensitive to time steps 20 seconds and longer for the strong forcing cases.792

We should treat these comparisons with some caution: KPP or SMC-LT were calibrated793

to different datasets than what we use for CATKE. Moreover, uncertainty in the accuracy of794

LES profiles near the surface — where CATKE, KPP, and SMC-LT often exhibit significant795

discrepancies — prevent firm conclusions about near-surface biases. That said, we find by796

manual inspection that for every constant-forcing case, CATKE predicts boundary layer797

depth simulated by LES — both inside and outside the training dataset — more accurately798

than either KPP or SMC-LT. This is an important result because boundary layer depth is799

a key metric determining the short-term sensitivity of climate predictions (Gregory, 2000;800

Held et al., 2010). With this broad summary of CATKE’s main successes stated, we focus801

the subsequent discussion for each case on CATKE’s biases and areas to focus on for future802

improvements.803

5.2.1 Constant forcing validation: free convection804

We begin with the free convection cases plotted in figure 5. The free convection cases805

represent some of the best predictions of KPP and SMC-LT. Boundary layer depth is806

well-predicted by all parameterizations to within 10 meters, with perhaps the greatest bias807
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coming from SMC-LT in the weakly-forced 72-hour case — despite that KPP has known808

structural biases for representing free convection (Souza et al., 2020). A large portion of809

the KPP profiles are stably-stratified within the boundary layer in our most strongly-forced810

convective cases. This bias, which is a known issue with KPP (see section 8.6.3 in Griffies811

et al., 2015), is particularly prominent in the cases we consider due to the strength of our812

forcing and the weakness of our underlying stratification. Of the three, CATKE exhibits813

the most well-mixed boundary layers under very strong forcing due to its convective mixing814

length.815

For near-surface buoyancy (and equivalently sea surface temperature, or SST) the three816

parameterizations make different predictions. For example, CATKE predicts a warmer817

SST because of its near-neutral boundary layer profile. On the other hand KPP, SMC-LT,818

and the LES all exhibit layers of unstable stratification next to the surface, and thereby819

also predict substantially colder SST than CATKE. Such upper boundary layer structure820

sensitively depends on a description of how mixing is suppressed (or not) close to the821

ocean surface. Unfortunately, we are unsure how far to trust the LES results, which822

may be missing important processes associated with wave breaking or unresolved wave-823

turbulence interactions. Addressing near-surface uncertainties in the LES data, and thereby824

coming to stronger conclusions about the relative fidelity of CATKE, KPP, and SMC-LT,825

requires observations of near-surface boundary layer structure to either validate or motivate826

improvements to the LES. We leave this for future work.827

The buoyancy profiles in figure 5 reveal bias in CATKE’s predictions of the detailed828

structure of the lower half of the convecting boundary layer. One contribution to this bias829

is well-known: in free convection, buoyancy fluxes in the lower half of the boundary layer830

are upgradient. In order to accurately capture the boundary layer depth, CATKE must831

accurately predict the buoyancy flux — and therefore cannot avoid erroneously predicting832

a slightly unstably stratified buoyancy profile where in the LES the profile is either nearly833

mixed or actually slightly stably stratified. No amount of calibration or additional free834

parameters can fix this bias given CATKE’s downgradient formulation. The only solution is835

to introduce a non-downgradient, non-local contribution to CATKE’s fluxes. For example,836

CATKE could be augmented with a mass flux scheme in the manner of Siebesma et al. (2007);837

Giordani et al. (2020). Other alternatives include evolving fluxes directly as in Garanaik et838

al. (2024), or adding prognostic tracer variances (Legay et al., 2024).839

To investigate CATKE’s free convection bias further, figure 5 compares CATKE’s840

predictions of the forced passive tracer profile with LES. This comparison reveals that while841

CATKE generally models the tracer profile well (except for the extreme, extrapolating, 6-hour842

case in panel a), CATKE tends to overmix especially in the lower part of the boundary layer,843

where the LES tracer profiles exhibit a slight peak and stronger gradients. Thus in addition844

to lacking a non-local contribution to fluxes, CATKE also overpredicts mixing to some degree,845

especially near the base of the boundary layer. The overprediction of mixing may be related846

to an overprediction of the tracer mixing length exhibited by figure 4. Addressing this bias847

could motivate adding non-local contributions to convective fluxes as well as modifying the848

depth structure of the convective mixing length.849

5.2.2 Constant forcing validation: shear-driven turbulence850

We next turn to pure shear- or wind-driven turbulence. We have two such cases, one851

without rotation and thus representing near-equatorial mixing, and a second with a Coriolis852

parameter of f = 10−4 s−1 corresponding to a latitude of about 43◦N. The wind forcing that853

would produce the momentum flux applied to the strong wind, no rotation cases spans from854

9–22 m s−1. The wind forcing in the strong wind (and rotating) cases spans 15–24 m s−1.855

A comparison between LES, SMC-LT, KPP, and CATKE for the strong wind, no856

rotation case is shown in figure 6. All parameterizations make similar and good predictions857

for boundary layer depth and surface temperature, except for SMC-LT in the 6-hour case,858
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Figure 5. A four-way comparison for the “free convection” constant forcing cases described in 1

and Appendix A between LES, CATKE, the K-profile parameterization (KPP Large et al., 1994),

and the Langmuir turbulence second moment closure described by Harcourt (2015) (SMC-LT). Both

KPP and SMC-LT are implemented in the General Ocean Turbulence Model (GOTM, Burchard

et al., 2006; Q. Li et al., 2019, 2021). Panel (a)–(e) show comparisons for free convection with

forcing of decreasing strength corresponding to the 6-, 12-, 24-, 48-, and 72-hour suites, respectively.

The free convection cases have no wind forcing and destabilizing buoyancy fluxes that correspond,

roughly, to heat fluxes between 181 and 2000Wm−2. The initial condition is density stratified with

a depth-varying buoyancy gradient that varies between 10−6 s−2 and 2 × 10−5 s−2. The passive

tracer forcing, which is described in appendix A2, is a Gaussian centered on z = −96 m and 8 m

wide. The strength of the forcing depends on the suite: the 6-, 12-, 24-, 48-, and 72-hour suites use

15 minute, 30 minute, 1 hour, 2 hour, and 4 hour forcing time scales, respectively.
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Figure 6. A comparison between LES and three turbulence closures (CATKE, KPP, and SMC-

LT) for the “strong wind, no rotation” constant forcing cases described in table 1 and Appendix A.

Surface stresses correspond to 9–22 m s−1 10-meter winds. See figure 5.

where it overmixes slightly. A comparison between CATKE and LES simulations of the859

forced passive tracer for the strong wind, no rotation case is shown in figure 6, revealing that860

CATKE fares far better for this case than for free convection, and more specifically exhibits861

a slight tendency to overmix near the base of the boundary layer and to undermix near the862

surface.863

The strong wind case with rotation plotted in figure 7 proves more challenging for864

CATKE and extremely challenging for SMC-LT and KPP. For all forcing strength, SMC-LT865

and KPP exhibit serious shallow bias and warm SST bias. CATKE simulations, on the other866

hand, are better but still exhibit a tendency to overmix slightly, resulting in boundary layers867

that are approximately 5% too deep. Figure 7 compares CATKE and LES predictions of the868

forced passive tracer for the strong wind case, corroborating the “overmixing bias” especially869

for the 6- and 48-hour suites, while additionally revealing undermixing near the surface.870

5.2.3 Constant forcing validation: mixed shear and convective turbulence871

CATKE simulations are also more accurate than KPP or SMC-LT for cases involving872

both wind and destabilizing buoyancy forcing, which produces a mixed regime of turbulence873

with both shear and buoyant production of TKE. We have three mixed cases comprising a874

total of 15 LES with both wind and buoyancy forcing: strong wind, weak cooling, medium875

wind, weak cooling, and weak wind, strong cooling. Results for these 15 cases are shown in876

figures 8, 9, and 10. KPP exhibits significant shallow bias for all cases. SMC-LT exhibits877

less shallow bias than KPP, but still more than CATKE. CATKE’s worst performance is in878

the weak wind, strong cooling cases where it overmixes.879
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Figure 7. A four-way comparison between LES and three turbulence closures (CATKE, KPP,

and SMC-LT) for the “strong wind” constant forcing cases described in table 1 and Appendix A.

The Coriolis parameter is f = 10−4 s−1 and surface stresses correspond to 15–24 m s−1 10-meter

winds. See figure 5.

Figures 8, 9, and 10 also compare CATKE and LES predictions of the forced passive880

tracer for strong wind, weak cooling, mid wind mid cooling, and weak wind weak cooling881

cases. The most bias is exhibited in the weak wind strong cooling case, where it tends to882

overmix as exhibits in both the boundary layer depth in figure 8 and the tracer profiles in883

figure 8. This shows that the most difficult cases are free convection and “weak wind, strong884

cooling” — the cases where convective dynamics dominate.885

In the “weak winds, strong cooling” case, the 72-hour LES is forced by 156 Wm−2
886

equivalent heat flux and 11 m s−1 10-meter atmospheric winds, while the 6-hour LES is887

forced by 1666 Wm−s and 16 m s−1 10-meter winds. In the 6- and 12-hour cases, KPP888

exhibits a similar “stable stratification bias” as seen in free convection in figure 5. SMC-LT889

exhibits a shallow bias for the strongly forced cases and a deep biased for the weakly forced890

cases (and quite accurate predictions for the 24-hour case). CATKE also predicts a too-sharp891

entrainment layer that is much thinner than the broad entrainment layer observed in the892

LES in the 6- and 12-hour weak winds, strong cooling cases. These simulations are farthest893

from quasi-equilibrium in time and may exhibit strong non-locality. Despite CATKE’s errors894

for the 6-hour case, however, CATKE’s boundary layer depth predictions for the 24-, 48-,895

and 72-hour case are accurate.896

5.2.4 Constant forcing validation: summary897

CATKE exhibits less bias than either KPP or SMC-LT across all cases, even when898

making predictions “outside” its training dataset. In particular, CATKE generates good899

predictions of boundary layer structure and depth, even in convective dominated cases where900

an analysis of tracer profiles suggests that CATKE tends to overmix. Fixing CATKE’s901
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Figure 8. A four-way comparison between LES and three turbulence closures (CATKE, KPP,

and SMC-LT) for the “strong wind, weak cooling” constant forcing cases described in table 1

and Appendix A. The Coriolis parameter is f = 10−4 s−1, surface stresses correspond to 14–23 m s−1

10-meter winds, and surface cooling ranges from 79–833 Wm−2. See figure 5.

convecitve biases will likely require additional work with both the convective mixing length,902

and CATKE’s stability function formulation for Ri < 0.903

CATKE makes good predictions relative to KPP or SMC-LT in part because its904

formulation expresses reasonable physical hypotheses, but also because its parameters have905

been calibrated comprehensively to minimize bias across a wide range of physical scenarios906

and vertical resolutions. In particular, the simulations that CATKE has been trained on are907

more similar to the extrapolation test cases (the 6- and 72-hour cases) than the datasets908

that either KPP or SMC-LT have been trained on. This generates ambiguity: do KPP909

and SMC-LT exhibit greater bias because of structural issues with their formulation, or do910

they need to be recalibrated in a similar manner as CATKE? Answers prove elusive. While911

KPP has known structural biases (see, for example, Souza et al., 2020), the formulation of912

SMC-LT is seemingly more general than CATKE. Further understanding requires calibrating913

KPP and SMC-LT in the same way we calibrate CATKE.914

5.3 Deep cycle turbulence in the tropics915

We turn to a validation case that requires significant extrapolation outside of the916

constant-forcing dataset: 34 days of deep cycle turbulence in the tropics forced by time-917

varying winds, surface heat fluxes, and surface freshwater fluxes, as well as lateral flux918

divergences derived from a regional ocean model. The scenario and LES that we use to919

validate the single column model simulations are described by Whitt et al. (2022). A920

comparison between the same LES and two other turbulence closures is also given by Reichl921

et al. (2024).922
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Figure 9. A four-way comparison between LES and three turbulence closures (CATKE, KPP, and

SMC-LT) for the “mid wind, mid cooling” constant forcing cases described in table 1 and Appendix

A. The Coriolis parameter is f = 10−4 s−1, surface stresses correspond to 13–20 m s−1 10-meter

winds, and surface cooling ranges from 125–1333 Wm−2. See figure 5.

Figure 11 illustrates the complex dynamics of this tropical turbulence situation by923

showing vertical kinetic energy from the LES, TKE from CATKE, and Ri from days 8 to 13924

of the time-series. A combination of wind stress and stabilizing solar insolation in daytime925

produces a shallow, stably-stratified jet in the upper ∼10 meters of the water column. As926

day turns to night, outgoing radiation starts to dominate the incoming solar insolation to927

reduce stratification and eventually destabilize the upper part of the water column, producing928

turbulent mixing driven by a combination of convective buoyancy flux and shear. Momentum929

is thereby mixed downwards and injected into the stably stratified region below the base of930

the boundary layer. Remarkably, because the region below the boundary layer is close to931

marginally stable (Smyth & Moum, 2013), this nocturnal injection of momentum from above932

eventually leads to shear instability that spans the entire, roughly 100 m depth of the region933

below the mixed layer. More often then not, the turbulence “pulsates” — initial bursts of934

turbulence mix momentum and buoyancy, decay, and precipitate a second and even a third935

burst of turbulence later on the evening (Smyth et al., 2017). The process, which is called936

“deep cycle turbulence”, repeats itself the next day.937

The slow growth and intermittent bursting of turbulence at night is prominent in938

LES vertical kinetic energy shown in figure 11a. Figure 11b shows that CATKE exhibits939

a qualitatively similar bursting behavior, though the timing of the bursts are sometimes940

misrepresented. Moreover, inspection of figures 11c and d reveals that CATKE underpredicts941

the Richardson number, Ri. (Panel d also shows that CATKE exhibits regions of negative942

Ri below z = −70 m which are absent from the LES. This deep unstable stratification,943

which can only produced by the GCM-derived lateral flux divergences, is also present in944

other parameterizations, such as in the k-ϵ solutions that underpin figure 13c and figure 14c.945

We are unsure why the lateral fluxes produce negative Ri, but do not investigate this issue946

–30–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

6 hour simulation 
(extreme forcing)

Buoyancy 
 (10⁻⁴ × m s⁻²)

1 2

z 
(m

)

−150

−100

−50

0
(a)

Passive tracer
−2 0 2 4

z 
(m

)

−150

−100

−50

0
(f)

12 hour simulation 
(strong forcing)

Buoyancy 
 (10⁻⁴ × m s⁻²)

1 2

(b)

Passive tracer
−2 0 2 4

(g)

24 hour simulation 
(medium forcing)

Buoyancy 
 (10⁻⁴ × m s⁻²)

1 2

(c)

Passive tracer
−2 0 2 4

(h)

48 hour simulation 
(weak forcing)

Buoyancy 
 (10⁻⁴ × m s⁻²)

1 2

(d)

Passive tracer
−2 0 2 4

(g)

72 hour simulation 
(very weak forcing)

Buoyancy 
 (10⁻⁴ × m s⁻²)

1 2

z 
(m

)

−150

−100

−50

0
(e)

Passive tracer
−2 0 2 4

z 
(m

)

−150

−100

−50

0
(i)

Large eddy simulation CATKE SMC-LT (Harcourt 2015) KPP (Large et al. 1994)Large eddy simulation CATKE SMC-LT (Harcourt 2015) KPP (Large et al. 1994)Large eddy simulation CATKE SMC-LT (Harcourt 2015) KPP (Large et al. 1994)Large eddy simulation CATKE SMC-LT (Harcourt 2015) KPP (Large et al. 1994)Large eddy simulation CATKE SMC-LT (Harcourt 2015) KPP (Large et al. 1994)

Figure 10. A four-way comparison between LES and three turbulence closures (CATKE, KPP,

and SMC-LT) for the “weak wind, strong cooling” constant forcing cases described in table 1

and Appendix A. The Coriolis parameter is f = 10−4 s−1, surface stresses correspond to 11–16 m s−1

10-meter winds, and surface cooling ranges from 156–1666 Wm−2. See figure 5.

further here. Finally, we note that this issue is relatively less prominent outside days 8–13947

within the total 34 day time-series.)948

Figure 12 investigates the discrepancy between LES-derived and CATKE-based Ri949

further by plotting the median Ri, N2, and S2 and shading the range of values between950

the 25% and 75% quantiles. The Ri statistics in the left panel show that while the LES951

Ri is relatively variable with a broad peak around Ri ≈ 0.21, CATKE’s Ri are narrowly952

concentrated around its steady state value 0.18. Turning to N2 (middle panel) and S2 (right953

panel), we see that the Ri bias is not straightforwardly associated with a bias in either N2
954

or S2 — both are slightly overpredicted (indicating undermixing), but nevertheless exhibit955

similar medians and ranges compared to the LES.956

Despite the errors in burst timing and Richardson number, CATKE’s predictions have957

realistic qualities not shared by other closures. To show this, figures 13 and 14 compare the958

vertical temperature flux, and the time-derivative of the vertical temperature flux between959

the LES, CATKE, and the k-ϵ parameterization implemented in Oceananigans (Umlauf &960

Burchard, 2005; Ramadhan et al., 2020). k-ϵ is similar to SMC-LT except that, like the LES961

described by Whitt et al. (2022), it neglects surface wave effects. Note that the LES data962

has been smoothed with a moving average to reduce noise, which is especially distracting963

when computing the time derivative of the vertical flux.964

In figure 13, which shows the period between days 8–13, both the LES and CATKE965

vertical fluxes exhibit vertically-coherent bursts, whereas k-ϵ’s flux predictions are smoother966

and smeared out over the deep turbulence cycle. The vertical coherence of vertical flux967

maxima is even more pronounced in the time-derivative of the vertical fluxes plotted in panels968

d–f. Figure 14 shows the same data between days 28–34, during which the three solutions969
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Figure 11. Overview of the tropical turbulence validation case. Panels show: (a) surface heat

fluxes and solar insolation, (b) vertical kinetic energy w′2 from the LES described by Whitt et al.

(2022), (c) CATKE’s TKE variable, (d) the Richardson number computed from the horizontally-

averaged LES momentum and buoyancy profiles, and (e) the Richardson number predicted by

CATKE. The shaded red areas in panels (d) and (e) indicate a negative Richardson number. Shown

here are days 8–13 out of the entire 34-day time-series. The heat fluxes are negative during the day

(heat going downwards, into the ocean) and positive at night (heat going up, out of the ocean). The

LES vertical kinetic energy and CATKE turbulent kinetic energy exhibit intermittent bursting. In

the deep region below the boundary layer where turbulent bursting occurs, LES-derived Richardson

numbers get as low as 0.15. In the CATKE solution and in the same region, the Richardson number

reaches a minimum of about 0.18.
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Figure 12. Median Ri = N2/S2 (left panel), and buoyancy frequency N2 (middle), and shear

S2 (right panel) at each depth computed from 34 days of realistic equatorial turbulence simulated

by LES and CATKE. The LES Ri is computed in terms of the horizontally-averaged shear and

buoyancy. Shading shows the range between the 25% and 75% quantiles. CATKE’s prediction of Ri

is smaller and more narrowly distributed around its steady-state Richardson number Ri† = 0.18

than the LES Ri. On the other hand, CATKE overpredicts both N2 and S2, thus undermixing

both momentum and buoyancy (with more momentum bias than buoyancy bias).

are more qualitatively distinguished. In particular, the time-derivative of the k-ϵ fluxes970

shown in panel f of figure 14 exhibit sharp, progressively deepening interfaces and generally971

lack vertically-coherent features. Neither the LES (panel d) or CATKE solutions (panel972

e) possess these interfaces and instead exhibit vertically-coherent features. Despite their973

qualitative similarity to LES, however, the CATKE solutions misrepresent the magnitude974

and timing of the vertically-coherent bursts. Improving both CATKE and k-ϵ will probably975

benefit from including time-dependent LES data with deep-cycle turbulence physics in a976

future calibration exercise.977

5.4 Sensitivity to vertical resolution and time-step978

Next we investigate the sensitivity of CATKE’s predictions to numerical parameters like979

vertical resolution and time-step size — a well-appreciated concern with ocean microscale980

parameterizations (Reffray et al., 2015; Van Roekel et al., 2018). The sensitivity of CATKE’s981

predictions to vertical resolutions ranging from 1 to 16 meters is shown in figure 15 for982

the weak wind, strong cooling case (the case for which CATKE exhibits the most bias).983

Recall that CATKE was calibrated using simulations with 2-, 4-, and 8-meter vertical984

resolution, such that 1 and 16 meters represent extrapolation in resolution. Based off the985

results in figure 15, we conclude that CATKE is insensitive to vertical resolutions 8 meters986

and finer. At 16 meter resolution, CATKE’s predictions are still better than KPP and987

SMC-LT, but nevertheless start to deviate from the higher-resolution CATKE solutions and,988

in particular, tend to overmix. It may be that with such a coarse resolution, the structure of989

strongly-stratified entrainment layers at the base of the boundary layer cannot be adequately990

resolved.991

The sensitivity of CATKE’s predictions to time-step size — at a vertical resolution of 1992

meter — are shown in figure 16. Note that CATKE requires a smaller time step for finer993

–33–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 13. A comparison of the vertical temperature flux and vertical temperature flux divergence

in tropical turbulence between LES (Whitt et al., 2022), CATKE, and the k-ϵ two-equation model

(Umlauf & Burchard, 2005).
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Figure 14. Vertical temperature flux and vertical temperature flux divergence as in figure 13,

but showing days 28–34.
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Figure 15. Illustration of sensitivity of CATKE predictions to vertical resolution for the weak

wind, strong cooling case. Four vertical resolutions are shown: 1, 4, 8, and 16 meters. CATKE’s

calibration explicitly minimized errors between LES and CATKE simulations at 2, 4, and 8 meter

resolution, such that the 1 and 16 meter cases represent “extrapolation in resolution.” The predictions

are converged for resolutions 8 meters and finer, but the 16 meter resolution results exhibit small

discrepancies from the converged solutions.

vertical resolution. Put differently, smaller time-steps are required to resolve the evolution of994

TKE, momentum, and tracers, and associated vertical transmission of information, on finer995

grids. More strongly forced cases also require smaller time steps. Figure 16, and additional996

tests, show that with 1 meter vertical resolution, CATKE requires time-steps 2 minutes or997

shorter to resolve the dynamics associated with surface forcing as strong as that encountered998

in the 6-hour-suite. (A 5-minute time step is adequately converged for the 12-, 24-, 48-, and999

72-hour suite, however.)1000

We address this sensitivity of CATKE’s predictions to time-step by implementing a1001

novel split-explicit scheme that substeps the TKE using a short time-steps, while evolving1002

momentum and tracers with a longer time-step. The details are given in Appendix B. The1003

results are shown in figure 17, showing that CATKE generates converged predictions for1004

momentum and tracer time-steps between 1 and 20 minutes when the TKE is substepped with1005

a short 30 second time step. When using substepping, the TKE time-step can be configured1006

according to the vertical resolution and strongest expected forcing over the duration of the1007

simulation, while the momentum and tracer time-steps may be configured by other stability1008

criteria, such as a CFL condition.1009

6 Discussion1010

This paper describes a novel one-equation parameterization for vertical fluxes by ocean1011

microscale turbulence called “CATKE”. CATKE extends existing one-equation parameteri-1012

zations (Blanke & Delecluse, 1993; Madec et al., 2017) with a dynamic model for convective1013

adjustment capable of describing the wide range of convective mixing rates observed in the1014

ocean surface boundary layer. CATKE’s 23 free parameters are calibrated against large eddy1015

simulations accounting for discretization errors. We use a posteriori calibration, meaning1016

that the CATKE parameters are calibrated to capture the full temporal evolution of the1017

coarse-grained variables rather than, for example, matching the unresolved eddy fluxes. This1018

approach improves both the accuracy and the stability of the calibrated parameterization.1019
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Figure 16. Sensitivity of CATKE predictions to time step for 1 meter vertical resolution for the

weak wind, strong cooling case. At 1 meter resolution and in the strong forcing conditions of the

12- and 6-hour suites, CATKE solutions show time-step dependence for time steps longer than 1

minute. To enable longer time steps for high vertical resolutions in the presence of strong forcing,

the substepping scheme described in Appendix B is used and demonstrated in figure 17.
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Figure 17. A comparison between LES and CATKE-parameterized single column simulations at

1 meter vertical resolution and three different momentum and tracer time-steps, when turbulent

kinetic energy is substepped with a 30 second time step using the scheme described in Appendix B.

For the 6-hour suite, the time-step dependence is greatly reduced compared to the non-substepped

case shown in figure 16, but is not entirely converged. We suspect this is because even momentum

and tracers require a time step shorter than 20 minutes for such strong forcing at high vertical

resolution.
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Our decision to develop a one-equation TKE-based parameterization rather than a1020

K-profile parameterization (KPP, see Large et al., 1994; McWilliams et al., 2009; Van Roekel1021

et al., 2018; Reichl & Hallberg, 2018; Reichl & Li, 2019) merits some discussion. KPPs have1022

a major advantage over TKE-based parameterizations in coarse resolution ocean models1023

(especially with different time-steps for momentum and tracer variables) because they admit1024

time-steps as long as 2 hours (Reichl & Hallberg, 2018). In part, we are interested in1025

one-equation parameterization because our focus is higher resolution, mesoscale-permitting1026

and mesoscale-resolving simulations that require 1–10 minute time-steps to satisfy the1027

advective numerical stability constraints of energetic solutions on relatively high-resolution1028

grids. CATKE adds no additional time step constraints to such simulations, while offering1029

some significant benefits: (i) dynamic prediction of diffusivity vertical structure versus1030

prescription via “shape functions”; (ii) turbulent intensity growth and relaxation time scales1031

or “memory”, and (iii) better computational performance on hardware with fine-grained1032

parallelism such as Graphics Processing Units (GPUs) used for example by Oceananigans1033

(Ramadhan et al., 2020; Silvestri, Wagner, Constantinou, et al., 2024) and Veros (Häfner et1034

al., 2021), which are ill-suited for the nonlinear solvers for boundary layer depth common to1035

KPP-type models (Zhang et al., 2020).1036

The automated calibration described in section 4 and Appendix C was repeated hundreds1037

of times during the development of CATKE. We developed CATKE by starting with a simple1038

formulation similar to the one described by Blanke and Delecluse (1993) — with no stability1039

functions (and thus a constant Prandtl number) and no special convective mixing length.1040

We then progressed, using calibration to justify increasing model complexity, to the presently1041

described form with continuously Ri-dependent stability functions in equation 28 and the1042

convective mixing length described in section 3.1.5. This development process represents1043

a “knowledge discovery loop” (National Academies of Sciences, Engineering, and Medicine1044

and others, 2022) with three steps: (i) formulation, (ii) calibration, and (iii) assessment.1045

For complex, nonlinear models — and even in the relatively simple single column context1046

of this paper — automatic calibration is essential to progress quickly from formulation to1047

assessment, and then to discover and justify further improvements to formulation, thereby1048

iteratively producing a high-quality, well-motivated, parsimonious parameterization.1049

Our calibration to a relatively limited range of LES cases reported in this paper (though1050

extensive compared prior efforts in ocean turbulence parameterization development) is just1051

the first step towards using CATKE for global ocean modeling and climate projection.1052

In particular, our ultimate objective is more accurate climate predictions with quantified1053

uncertainties. Addressing this ultimate goal requires first quantifying the uncertainty of1054

CATKE’s free parameters relative to LES, using the calibration context presented in this1055

work. Next, with prior parameter distributions in hand, CATKE’s free parameters must then1056

be recalibrated concomitant with other climate model free parameters against global climate1057

observations to account for physics missing from the LES in this work, and to account for1058

interactions between CATKE and other components of the climate model.1059

A second future step is to further calibrate CATKE to a more comprehensive suite of1060

LES forced with temporally-varying surface fluxes, surface wave fields with La ̸= 0.3, and1061

horizontal flux divergences (for example following Whitt et al., 2022). These calibrations1062

against more comprehensive LES will provide better prior estimates of CATKE’s parameters1063

in preparation of the final goal of calibrating CATKE in a global context. More comprehensive1064

calibration to more LES and to observations in a global context will likely reveal deficiencies1065

to be addressed by further development of CATKE’s formulation, such as accounting for the1066

effect of surface waves on CATKE’s mixing and dissipation length scales.1067
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Appendix A A synthetic dataset generated by large eddy simulations1068

We use a synthetic dataset to calibrate and assess CATKE consisting of 35 idealized1069

large eddy simulations (LES) of the ocean surface boundary layer with imposed constant1070

surface fluxes of temperature and momentum and a simple surface wave field.1071

A1 Initial conditions1072

The LES are initialized from rest with zero velocity and the piecewise-linear buoyancy1073

stratification1074

b(z, t = 0) =


N2

1 z for z > −h1 ,
N2

2 z +
(
N2

2 −N2
1

)
h1 for − h2 < z < −h1 ,

N2
3 z +

(
N2

3 −N2
2

)
h2 +

(
N2

2 −N2
1

)
h1 for z < −h2 ,

(A1)1075

with N2
1 = N2

3 = 2× 10−6 s−2, N2
2 = 10−5 s−2, h1 = 48m, and h2 = 72m.1076

A2 Passive tracer forcing1077

We additionally simulate the evolution of a passive tracer c which is forced by1078

Fc(z) = ω+e
−(z−zc)2/2λ2

c − ω− , (A2)1079

where zc is the depth of the forcing, λc is the width of the forcing, ω+ is an inverse forcing1080

time-scale that varies between each suite, and ω− is chosen so that Fc has zero mean, that is1081

ω−
def
=

ω+

Lz

∫ 0

−Lz
e−(z−zc)2/2λ2

c dz (A3)

≈ ω+
λc
√
2π

Lz
, (A4)

where Lz is the depth of the domain. The approximation in (A4) holds when the forcing is1082

far from boundaries, or when −Lz ≪ zc − λc and 0 ≫ zc + λc.1083

To generate tracer gradients within the boundary layer, we use a relatively narrow1084

forcing profile with λc = 8 m centered at zc = −96 m, near the bottom of the boundary layer1085

at the end of each simulation. We additionally use a forcing time scale ω−1
+ that is similar to1086

the typical mixing time-scale: 15 minutes, 30 minutes, 1 hour, 2 hours, and 4 hours for the1087

6, 12, 24, 48, and 72 hour suites, respectively. These choices ensure a passive tracer profile1088

that, unlike the well-mixed buoyancy profile, reveals the structure of turbulent tracer mixing1089

within the boundary layer. The passive tracer data thus provides an important additional1090

constraint on CATKE’s prediction of the tracer mixing length, ℓc.1091

A3 Constant-flux boundary conditions1092

The 35 simulations, which have different boundary conditions and Stokes drift are1093

organized into 5 “suites”, each of which has 7 cases: free convection, weak wind strong1094

cooling, medium wind medium cooling, strong wind weak cooling, strong wind, strong wind1095

no rotation, and strong wind and sunny. The suites differ by both forcing strength and1096

duration, simulating 6, 12, 24, 48, and 72 hours of boundary layer turbulence respectively.1097

The forcing strength is chosen for each suite and case so that the boundary layer deepens1098

to roughly half the depth of the domain; for example, the “6-hour suite” has the strongest1099

forcing, and the “72-hour suite” has the weakest forcing. “Strong wind no rotation” and1100

“strong wind and sunny” use f = 0, while the rest use the Coriolis parameter f = 10−4 s−1.1101

The surface fluxes for the 35 LES are summarized in tables 1 and 2. To draw a connection1102

between the LES suites and real air-sea flux conditions, tables 1 and 2 provide an estimate1103

of heat fluxes Q for each case, as well as an estimate of the atmospheric wind at 10 meters1104
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height using similarity theory (reduced to the case of neutral buoyancy fluxes for simplicity,1105

see Large and Yeager (2009)),1106

u10 =

√
|τa|
c10

, where c10 =

(
κ

log (10/ℓr)

)2

, and ℓr = 0.011
|τa|
g
, (A5)1107

where ℓr is the Charnock roughness length given gravitational acceleration g = 9.81m s−2,1108

κ = 0.4 is the von Kármán constant, and τa = ρoτx/ρa is the atmospheric kinematic1109

momentum flux given ocean reference density ρo = 1024 kgm−3 and atmosphere density1110

ρa = 1.2 kgm−3.1111

A4 Stokes drift model1112

For all wind-forced cases, we additionally impose a surface wave field with a surface1113

Stokes drift amounting to a constant “Langmuir number” La =
√
u⋆/US(z = 0) ≈ 0.3. Our1114

Stokes drift prescription models a surface wave field with the friction-number-dependent1115

peak wavenumber1116

kp = Ck
g

u2⋆
, (A6)1117

where u⋆ =
√
|τx| is the water-side friction velocity, g is gravitational acceleration, and we1118

use Ck = 10−6.1119

We follow Lenain and Pizzo (2020) to estimate the depth-profiles of Stokes drift and1120

Stokes drift shear. The Stokes drift beneath a spectrum of deep-water waves is1121

US(z) = 2

∫ ki

kp

e2kzk
√
gk χ(k) dk , (A7)1122

where χ(k) is a one-dimensional wave spectrum that neglects “directional spreading”. The1123

spectrum χ(k) is divided into an “equilibrium range” just above the spectral peak kp, and a1124

“saturation range” at even higher wavenumbers:1125

χ(k) =

{
Cβ
2
√
ga⋆k

−5/2 for kp < k < kn (equilibrium) ,

CBk
−3 for kn < k < ki (saturation) ,

(A8)1126

where kn is a transition wavenumber between equilibrium and saturation ranges, ki is an1127

upper wavenumber cutoff above which waves are assumed to be isotropic and there do not1128

contribute to Stokes drift. a⋆ = u⋆
√
ρo/ρa is the air-side friction velocity defined in terms1129

of the water-side friction velocity u⋆, a reference air density ρa = 1.2 kgm−3 and ocean1130

density ρo = 1024 kgm−3. Wavenumbers below the spectral peak kp are assumed too weak1131

to contribute appreciably to Stokes drift.1132

Both the transition wavenumber kn and the isotropic wavenumber ki decrease with1133

increasing u⋆:1134

kn
def
= Crga

−2
⋆ , (A9)

ki
def
= Ciga

−2
⋆ , (A10)

where Cr = 9.7× 10−3 and Ci = 0.072.1135

The Stokes drift is1136

US(z) = Cβa⋆

∫ kn

kp

e2kz

k
dk + 2CB

√
g

∫ ki

kn

k−3/2e2kz dk . (A11)1137

Noting that
∫ kn
kp

k−1e2kz dk = Ei(2knz) − Ei(2kpz), where Ei is the exponential integral1138

function, we find1139

US(z) = Cβa⋆ [Ei(2knz)− Ei(2kpz)] + 2CB
√
g [υ(kn)− υ(ki)] , (A12)1140
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and1141

∂zU
S = 2Cβa⋆

∫ kn

kp

e2kz dk + 4CB
√
g

∫ I

n

e2kz√
k

dk , (A13)1142

= Cβa⋆
e2kpz − e2knz

|z|
+ 2CB

√
2πg

|z|

[
erf
(√

2kn|z|
)
− erf

(√
2ki|z|

)]
, (A14)1143

for the Stokes shear.1144

A5 LES uncertainty: effects of resolution and Stokes drift1145

All LES use 2 meter horizontal resolution and a stretched vertical resolution that varies1146

from 0.8 meters in the upper half of domain to 2.3 meters at the bottom. We refer to this1147

as “1 meter” vertical resolution. Our LES utilize an “implicit” model for subgrid fluxes1148

whereby kinetic energy and tracer variance are solely dissipated by a minimally-diffusive1149

9th-order Weighted, Essentially Non-Oscillatory (WENO) advection scheme (Shu, 2020).1150

The advantages of using WENO-based implicit dissipation (and no explicit closure for subgrid1151

turbulent fluxes) are discussed by Pressel et al. (2017) and Silvestri, Wagner, Campin, et al.1152

(2024).1153

To account for the effects of resolution on the 35 LES used as synthetic observations in1154

this paper, we run 70 additional LES on coarser grids with double (“2 meter”) and quadruple1155

(“4 meter”) resolution, and use these to estimate the observational uncertainty used in1156

calibration (see 4 for more details). The effect of resolution depends on forcing strength: for1157

the 6 and 12 hour suite, the results are nearly identical for 1- and 2-meter vertical resolution.1158

Figure A1 shows the results for 4 cases in the 12 hour suite. Note that in the free convection1159

case, the first two grid points exhibit a strong unstable stratification in the 12 hour suite. We1160

attribute this to an artificial reduction of mixing near the top boundary of the LES. It might1161

be possible to address this artificially-strong unstable mean stratification by introducing, for1162

example, a surface-concentrated eddy diffusivity. However, because the LES are used only1163

for training CATKE and thus matter mostly in their predicted boundary layer depth, we1164

choose instead to ignore the top 4 m when computing the LES–CATKE discrepancy during1165

calibration.1166
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Figure A1. Resolution dependence of 12-hour LES.

Figure A2 shows the resolution dependence of the 24-hour suite. These LES show1167

slightly more resolution dependence than the 12-hour suite, especially for cases forced by a1168

combination of wind and cooling. This indicates that our LES data for more weakly forced1169

cases are less certain than the strongly forced cases.1170
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A6 Effect of Stokes drift on LES results1171

Next we turn to the effect that including the Stokes drift profile described in section A41172

has on our LES results. The inclusion of Stokes drift in our LES is an attempt to make1173

them slightly more realistic. In other words, we hypothesize that calibrating CATKE to LES1174

without surface waves would generally lead to a shallow bias in mixed layer depth prediction1175

with CATKE — since surface waves are always present above real wind-forced ocean surface1176

boundary layers.1177
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Figure A3. Stokes drift dependence of 12-hour LES.

This notion is corroborated by figure A3, which shows the horizontally-averaged buoyancy1178

profiles for 4 LES in the 12 hour suite, with and without Stokes drift. As expected, the1179

inclusion of Stokes drift produces more mixing and makes the boundary layer deeper. The1180

effect of Stokes drift is minor in the case of weak and medium winds (leftmost and second1181

from left panels). In the strong wind (and rotating) case, the inclusion of Stokes drift makes1182

the boundary layer 20 meters deeper, or around 20% of the total. In the strong wind, no1183

rotation case, the case without Stokes drift completely fails to transition to the turbulence.1184

(A small amount of cooling would probably be required to produce turbulence in the strong1185

wind, no rotation case without Stokes drift.)1186
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Appendix B Split-explicit turbulent kinetic energy time stepping and1187

vertical discretization1188

CATKE’s time discretization is a little non-trivial since we step forward velocity and1189

tracers first, then step forward TKE and also use substepping/split–explicit scheme for TKE.1190

In the single column case, we integrate equations (13)–(15) with the backward Euler scheme1191

un+1 − un

∆t
= ∂z

(
Kn
u∂zu

n+1
)
+ fvn + F̄nu , (B1)1192

vn+1 − vn

∆t
= ∂z

(
Kn
u∂zv

n+1
)
− fun + F̄nv , (B2)1193

cn+1 − cn

∆t
= ∂z

(
Kn
c ∂zc

n+1
)
+ F̄nc , (B3)1194

where ∆t = tn+1 − tn and the superscripts n or n+ 1 indicate the time step at which the1195

quantity is evaluated. For the TKE equation (19), we introduce a substepping scheme that1196

uses M short time step sizes ∆t/M to integrate e between n to n+ 1,1197

em+1 − em

∆t/M
= ∂z

(
Km
e ∂ze

m+1
)

︸ ︷︷ ︸
transport

+Kn
u

1
2

(
∂zu

n + ∂zu
n+1
)
· ∂zun+1

︸ ︷︷ ︸
shear production

+w′b′
m −

√
em

ℓmD
em+1

︸ ︷︷ ︸
dissipation

,

(B4)1198

where the superscripts m and m + 1 denote the substep level. In practice, when using1199

substepping, we fix the time step size for the TKE equation, ∆te, and compute the substep1200

number M = ceil (∆t/∆te) in terms of ∆te and the momentum and tracer time step size,1201

∆t.1202

The buoyancy flux w′b′
m

in (B4) is discretized in time using the conditionally-implicit1203

“Patankar trick” (Burchard, 2002), such that1204

w′b′
m

=

{
−Kn

c ∂zb
n+1 when ∂zb

n+1 ≤ 0

−Kn
c ∂zb

n+1 em+1

em when ∂zb
n+1 > 0

(B5)1205

which improves the stability of (B4) and keeps e from becoming too negative due to numerical1206

errors associated with, for example, advection schemes with oscillatory errors. Note that1207

shear production is not updated during substepping. The time discretization of the shear1208

production term in (B4), which incorporates shear measured at the time step n and n+ 1,1209

also follows Burchard (2002) and requires an algorithm that stores the velocity field at time1210

step n, stepping forward momentum and tracers, and then substepping forward e.1211

We spatially-discretize u, v, c, and e on a staggered vertical grid (not shown), with1212

all variables vertically located at cell centers — a deviation from Blanke and Delecluse1213

(1993), Burchard (2002), or Madec et al. (2017) who place u, v, c at vertical cell centers1214

but TKE at vertical cell interfaces where the diffusivity is computed (sometimes called1215

“w-locations”). The vertical spatial discretization of the shear production term is derived from1216

the mean kinetic energy equation following Burchard (2002), but adapted to our cell-centered1217

placement of e. We use a tridiagonal solve to advance u, v, c, e in (B1)–(B4) over each time1218

step of substep, treating both diffusion and linear terms in (B4) implicitly.1219

Discretizing e at cell centers allows us to re-use tracer advection and diffusion schemes1220

and may yield a higher-quality representation of three-dimensional advection (a process1221

that is neglected in the single column results of this paper). However, we anticipate a1222

trade-off between representing advection and the need to reconstruct e to compute the1223

diffusivities Ku, Kc, and Ke at vertical cell interfaces according to (12). That said, the1224

vertical resolution results shown in figure 15 suggest that our discretization yields accurate1225

solutions at 10-meter-resolution and finer. We leave further investigation into CATKE’s1226

vertical discretization (which may depend on the application, since for example the advection1227

of e likely only becomes important at very high horizontal resolution) for future work.1228
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Appendix C A posteriori calibration1229

We use Ensemble Kalman Inversion (EKI; Iglesias et al., 2013) to calibrate CATKE.1230

EKI is a gradient-free and computationally inexpensive method for solving nonlinear inverse1231

problems. EKI supposes that a forward map G(C) can predict uncertain observations Y1232

given a set of free parameters C,1233

Y = G(C) + η , (C1)1234

where η ∼ N (0,M) is normally-distributed random uncertainty with covariance M. Four1235

objects appear in the model-data relation (C1),1236

1. Observations Y with Q discrete elements Yq. In this paper, each Yq represents a state1237

variable like velocity U or buoyancy B at a particular depth and time, computed from1238

LES data by horizontal averaging and vertical coarse-graining, and then normalized1239

and shifted to have zero mean and unit variance.1240

2. A parameter set C with P free parameter values Cp.1241

3. A forward map G(C) whose elements Gq(C) predict the observation Yq. G(C) rep-1242

resents a model that maps a parameter set C to the space of observations Y. In1243

our case, constructing G(C) requires forward evaluations of 63 single column models1244

parameterized by C, each predicting the evolution of horizontally-averaged variables1245

in 21 LES at 2-, 4-, and 8-meter resolution.1246

4. Random Gaussian uncertainty η ∼ N (0,M) with covariance M associated with both1247

Gq(C) and Yq. η conflates uncertainty in Y with “structural” uncertainty associated1248

with imperfect forward maps G.1249

The elements of Y are the discrete values of the horizontally-averaged temperature1250

and velocity fields output from 21 LES coarse-grained to three grids with uniform 2-, 4-,1251

and 8-meter spacing. Each physical field is shifted, normalized, and weighted before being1252

assembled into Y. Each forward map G (C) involves 3× 21 = 63 simulations to find U , V ,1253

and B profiles for each LES case at the three model vertical resolutions.1254

C1 Ensemble Kalman dynamics1255

Ensemble Kalman Inversion may be interpreted as a dynamical system that governs the1256

evolution of an ensemble of E parameter sets, or “particles”, C
def
= [C1,C2, · · · ,CE ]. Here1257

the superscript α denotes the “particle index”, which varies across the ensemble: Cαp is the1258

pth parameter value of the αth particle.1259

Each parameter set Cα obeys the ordinary differential equation1260

d

dT
Cα = −K(C,G)M−1 (Gα − Y) , (C2)1261

where Gα def
= G(Cα) is the forward map computed with the parameter set Cα, and T is1262

the “pseudotime”. The matrix K(C,G) in (C2) is the covariance matrix estimated from1263

ensemble statistics at pseudotime T , thus coupling the evolution of the ensemble. For two1264

“ensemble matrices” A and B, where A for example is constructed from an ensemble of1265

vectors [A1
i , A

2
i , · · · , AEi ], the elements Kij(A,B) are defined1266

Kij (A,B)
def
=

1

N

N∑
α=1

(
Aαi − ⟨A⟩i

)(
Bαj − ⟨B⟩j

)
, with ⟨C⟩i

def
=

1

E

E∑
α=1

Cαi . (C3)1267

For nearly-linear maps Gq(C) ≈ HpqCp, (C2) reduces to1268

d

dT
Cα ≈ −K(C,C)∇CΦ

α , (C4)1269
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where Kij(C,C) is the P × P parameter-parameter covariance matrix (Kovachki & Stuart,1270

2019). The “EKI objective” Φα associated with parameter set α appears in (C4), where1271

Φ(G,Y;C) def
=
∥∥M−1/2 [G(C)− Y]

∥∥2 , (C5)1272

and Φα
def
= Φ(G,Y ;Cα). Φ in (C5) is a functional of G that measures the uncertain discrepancy1273

between G(C) − Y. The system (C4) minimizes Φ using gradient descent preconditioned1274

with K(C,C), where the gradients ∇CΦ are estimated from the parameter ensemble.1275

We integrate the EKI dynamical system (C2) in using a forward Euler discretization,1276

Cα
∣∣
ν+1

= Cα
∣∣
ν
−∆T

[
K(C,G)M−1 (Gα − Y)

]
ν
, (C6)1277

where ν is the pseudotime iteration and ∆T is a pseudotime step size. The adaptive step1278

size ∆T is chosen at each iteration according to Kovachki and Stuart (2019). The initial1279

parameter sets Cα at T = 0 are generated by randomly sampling the priors listed in table 3.1280

EKI is practical for two reasons: (i) it does not require explicit gradients of G with1281

respect to parameters C, and (ii) the forward map evaluations Gα — the most expensive1282

part of integrating (C2) — are independent and thus easily parallelized. Reason (i) means1283

EKI is applicable to any simulation framework with changeable parameters C. Reason (ii)1284

means that considerable yet distributed resources can be leveraged efficiently: given sufficient1285

distributed resources, the cost of a single EKI iteration depends only on the cost of a single1286

forward map evaluation, independent of ensemble size. This parallelizability benefits small1287

problems such as calibration in a single column context.1288

C2 Uncertainty covariance1289

We associate the uncertainty M with the numerical fidelity of the large eddy simulations1290

by defining1291

M = cov
(
[Y1m Y2m Y4m]

)
, (C7)1292

where Y1m,Y2m,Y4m denote observations obtained from LES with 1-, 2-, and 4-meter vertical1293

resolution.1294

C3 Constrained and unconstrained parameters1295

The dynamics (C6) require normally-distributed parameters Cp, which precludes the1296

imposition of strict bounds such as non-negativity. We therefore introduce the forward and1297

inverse transforms,1298

Cp = log
b− C̃p
C̃p − a

and C̃p = a+
b− a

1 + exp(Cp)
, (C8)1299

between “constrained” physical parameters C̃ that are bounded between (a, b), and uncon-1300

strained parameters C. The transformation (C8) implies that if Cp is normally-distributed1301

then C̃ is bounded by (a, b) with a scaled, shifted logit-normal distribution.1302

We denote the scaled, shifted logit-normal distribution bounded by (a, b) as B(a, b) and1303

use it to model the distribution of all of CATKE’s free parameters. The distributions B(a, b)1304

formulated so their corresponding normal distributions have zero mean and unit variance.1305

When integrating (C6), the normally-distributed parameter sets Cα are transformed into1306

their physical space counterparts C̃α via (C8) when evaluating Gα = G(Cα) and thus solving1307

the single column equations (13)–(15) and (19).1308

C4 Failure criterion handling1309

Poor parameter choices Cα often lead to failed simulations of the single column sys-1310

tem (13)–(15) and (19). In that case the forward map Gα is not informative and must be1311

ignored when performing the Euler step (C6).1312
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We first define the median and the “median absolute deviation” of the EKI objective1313

samples, Φα
def
= Φ(G,Y;Cα),1314

Φ̃
def
= median (Φα) and s

def
= median

(∣∣Φα − Φ̃
∣∣) , (C9)1315

We mark a particle α as “failed” if1316

Φα > Φ̃ + 3s . (C10)1317

This excludes both non-finite and just “particularly anomalous” Φα.1318

Open Research Section1319

This work relied on the open-source software LESbrary.jl (Wagner et al., 2023) and1320

Oceananigans.jl (Ramadhan et al., 2020) to run the LES, Oceananigans.jl to run calibration1321

simulations, and ParameterEstimocean.jl (Wagner et al., 2022) and EnsembleKalmanPro-1322

cesses.jl (Dunbar et al., 2022) for the Ensemble Kalman Inversion. Visualizations were made1323

using Makie.jl (Danisch & Krumbiegel, 2021). Scripts for performing the calibration are avail-1324

able at the GitHub repository github.com/glwagner/SingleColumnModelCalibration.jl1325

(Wagner, 2024).1326
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