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We derive a wave-averaged potential vorticity equation describing the evolution
of strongly stratified, rapidly rotating quasi-geostrophic (QG) flow in a field of
inertia-gravity internal waves. The derivation relies on a multiple-time-scale asymptotic
expansion of the Eulerian Boussinesq equations. Our result confirms and extends the
theory of Bühler & McIntyre (J. Fluid Mech., vol. 354, 1998, pp. 609–646) to
non-uniform stratification with buoyancy frequency N(z) and therefore non-uniform
background potential vorticity f0N2(z), and does not require spatial-scale separation
between waves and balanced flow. Our interest in non-uniform background potential
vorticity motivates the introduction of a new quantity: ‘available potential vorticity’
(APV). Like Ertel potential vorticity, APV is exactly conserved on fluid particles. But
unlike Ertel potential vorticity, linear internal waves have no signature in the Eulerian
APV field, and the standard QG potential vorticity is a simple truncation of APV
for low Rossby number. The definition of APV exactly eliminates the Ertel potential
vorticity signal associated with advection of a non-uniform background state, thereby
isolating the part of Ertel potential vorticity available for balanced-flow evolution.
The effect of internal waves on QG flow is expressed concisely in a wave-averaged
contribution to the materially conserved QG potential vorticity. We apply the theory
by computing the wave-induced QG flow for a vertically propagating wave packet
and a mode-one wave field, both in vertically bounded domains.

Key words: geophysical and geological flows, internal waves, quasi-geostrophic flows

1. Introduction

The quasi-geostrophic (QG) approximation is a reduced description of the slow
dynamics of planetary flows which, being perturbations on a state of rapid rotation
and strong stratification, are nearly in geostrophic and hydrostatic balance. QG is
simple and elegant and describes many characteristics of observed flows in the
atmosphere and ocean. A main motivation for the QG approximation is the exclusion
of inertia-gravity internal waves, which oscillate on super-inertial frequencies much

† Email address for correspondence: glwagner@ucsd.edu
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faster than the sub-inertial time scales of QG flow evolution. This time-scale
separation motivates a central assumption in QG: internal waves have negligible
effect on slow, nearly-balanced flow.

The assumption of weak interaction between internal waves and QG flow was
assessed by Bühler & McIntyre (1998, BM hereafter), who used the generalized
Lagrangian mean (GLM) to demonstrate that average wave terms contribute to
the balance of the materially conserved, wave-averaged quasi-geostrophic potential
vorticity (QGPV). This ‘wave-QG’ theory is a significant extension to the QG
framework and demands detailed understanding. With this motivation, we provide an
alternative Eulerian derivation of wave-QG that avoids the GLM transformation of the
Boussinesq equations. Our derivation, which relies instead on a multiple-time-scale
expansion, confirms the main results of BM while extending the validity of wave-QG
to non-uniform buoyancy frequency N(z), and thus non-uniform background potential
vorticity f0N2(z). We make no assumption about spatial-scale separation between
waves and balanced flow, so that our theory is relevant to mesoscale atmospheric
flows and oceanic mesoscale and submesoscale flows where motion is mixed between
large-scale waves and balanced geostrophic turbulence (Callies, Ferrari & Bühler
2014).

The challenge of non-uniform background stratification motivates the definition of a
new material invariant: available potential vorticity (APV). APV exactly eliminates the
part of Ertel PV that plays only a passive, background role, thereby isolating the part
of PV available for flow evolution. APV proves crucial for the derivation of wave-QG,
where strong internal waves generate large but unimportant Eulerian fluctuations in
Ertel PV. The physical significance of APV is suggested by the emergence of QGPV
at leading order in a low-Rossby-number expansion of the exactly conserved APV.

Like the standard QG case (Pedlosky 1982; Salmon 1998; Vallis 2006), the
evolution of balanced flow in an internal wave field is described in terms of the
quasi-horizontal advection of QGPV, q, by a geostrophic streamfunction ψ ,

qt + J(ψ, q)= 0, (1.1)

where J(ψ, q) = ψxqy − ψyqx is the Jacobian in (x, y). ψ is the streamfunction
of the Lagrangian-mean velocity field, defined as the sum of Eulerian-mean and
wave-induced ‘Stokes’ velocity correction fields. The Lagrangian-mean velocity field
determines particle trajectories that remain after rapid wave-induced oscillations are
filtered; in this sense, (1.1) is consistent with our usual understanding of potential
vorticity as a material invariant.

The wave-averaged QGPV in (1.1) includes the standard QGPV as well as an
average, quadratic wave contribution, qw,

q def=
(
∂2

x + ∂2
y

︸ ︷︷ ︸
def= 1

+ ∂z
f 2
0

N2
∂z

︸ ︷︷ ︸
def= L

)
ψ + βy+ qw. (1.2)

In (1.2), f0 is the Coriolis frequency at fixed latitude, N(z) is the buoyancy frequency
and β models the latitudinal variation of Coriolis frequency. Two operators are defined
in (1.2): the horizontal Laplacian 1 and the vertical derivative operator L. We provide
several equivalent expressions for qw in appendix B. One appealing form is

qw = J(u, ξ)+ J(v, η)+ f0J(ξ , η)︸ ︷︷ ︸
−ẑ · ∇× p

+ 1
2 f0
(
ξiξj
)
,ij , (1.3)
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APV and wave-averaged quasi-geostrophic flow 403

where the overbar is a time or phase average over the linear internal wave field: a
‘wave average’. The linearized wave particle displacement, ξ = ξ x̂+ηŷ+ ζ ẑ, is defined
through u = ξt and the rightmost term in (1.3) employs indicial notation for which
summation over repeated indices is implied. In (1.3) we indicate the BM relation
between qw and the curl of p, the pseudomomentum defined in (B 7) and by Andrews
& McIntyre (1978). The term ‘wave-averaged’ is used deliberately to emphasize the
particular consequences of averaging over wave fields as opposed to averaging over
turbulent fluctuations, for example.

Equations (1.1)–(1.3) describe the interaction of balanced flow with a non-transient
internal wave field generated steadily at distant boundaries or maintained by external
forcing. This differs from the geostrophic adjustment scenario considered by Zeitlin,
Reznik & Ben Jelloul (2003) and from spontaneous loss of balance discussed, for
example, by Vanneste (2013). In the case of geostrophic adjustment, wave-mean
interaction is precluded by transient wave decay due to radiation from a compact
region of initial excitation (Reznik, Zeitlin & Ben Jelloul 2001). Spontaneous loss of
balance, on the other hand, is characterized by an exponentially small dependence on
Rossby number and is not accessible by the straightforward perturbation expansion
used to derive (1.1)–(1.3).

The appearance of qw in (1.2) implies dynamic and energetic interaction between
externally forced internal waves and mean, balanced flow. This point is discussed
explicitly by Kataoka & Akylas (2015) for wave beams in non-rotating flow and
by Xie & Vanneste (2015) for near-inertial waves in rotating flow. In particular,
Xie & Vanneste (2015) couple the wave-QG system in (1.1)–(1.3) with an equation
describing slow near-inertial wave evolution, and show that conservation laws of their
coupled system suggest that near-inertial waves extract energy from balanced flow.

The Eulerian route to the wave-averaged QG equation in (1.1)–(1.3) starts with
a scaling of the Eulerian Boussinesq equations in § 2. We use a scaling in which
leading-order internal waves interact with relatively weaker balanced flow. In § 3 we
introduce APV, which provides invaluable simplifications in the derivation of the
conservation equation for wave-averaged potential vorticity. We propose an expansion
in wave amplitude and a method of multiple time scales in § 4. This Eulerian path
provides contrasting scenery from the GLM route; for example, the wave-averaged
geostrophic balance condition is that ψ , the balanced streamfunction in (1.1), is equal
to the Eulerian mean pressure plus half of the Stokes pressure correction divided by
the Coriolis frequency f0. In § 5 we apply the theory by computing the balanced flow
induced by a vertically propagating wave packet and by a vertical mode-one internal
wave field, both in bounded domains.

The main algebraic difficulties of the wave-QG derivation lie in the many equivalent
forms for qw that follow from a slew of quadratic identities for the linearized and
hydrostatic Boussinesq system. We find that some simple forms for qw bear little
resemblance to the pseudomomentum-based expression in BM. These technical details,
including a demonstration of equivalence between GLM-derived and Eulerian-derived
expressions for qw, are in appendices A and B.

2. The Boussinesq equations

Our starting point is the Boussinesq equations. Defining a constant reference density
with ρ0, we decompose the total density ρ into

ρ(x, t)= ρ0[1− g−1B(z)− g−1b(x, t)], (2.1)
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404 G. L. Wagner and W. R. Young

where x= (x, y, z) is position and t is time. In (2.1), B(z) is the buoyancy profile of the
fluid at rest and b(x, t) is the dynamic part of the buoyancy. The buoyancy frequency
is N2(z)=B′(z). The pressure is decomposed similarly into −ρ0gz+ρ0P(z)+ρ0p(x, t),
where P′(z)= B(z) and the dynamic component of pressure is ρ0p(x, t).

Using these definitions the Boussinesq equations are

Du
Dt
− fv + px = 0, (2.2)

Dv
Dt
+ fu+ py = 0, (2.3)

Dw
Dt
+ pz = b, (2.4)

Db
Dt
+wN2 = 0, (2.5)

ux + vy +wz = 0, (2.6)

where u= ux̂+ vŷ+wẑ is the fluid velocity and

D
Dt

def= ∂t + u · ∇ (2.7)

is the material derivative. The Ertel PV is

Π
def= (N2ẑ+∇b) · (f ẑ+ω), (2.8)

where ω def= ∇×u is the vorticity. Ertel PV is a material invariant of (2.2)–(2.6), such
that

DΠ
Dt
= 0. (2.9)

Finally, we make the beta-plane approximation to model the variation of the Coriolis
force with latitude by introducting f (y)= f0 + βy.

3. Available potential vorticity

The derivation of (1.1)–(1.3) is simplified by introduction of a new material
invariant: the available potential vorticity (APV), whose dynamics follow from the
exact PV equation.

We motivate the definition of APV with a thought experiment. Consider a fluid at
rest with β = 0. The potential vorticity is Π = f0N2(z) = f0B′(z), where B(z) is the
resting buoyancy field introduced in (2.1). Since B(z) and B′(z) depend only on z, we
can write B′ in terms of B with the functional relation

B′ =F (B). (3.1)

When β = 0, PV and buoyancy are related in the rest state by Π = f0F (B), so that
PV is constant on surfaces of constant buoyancy.

Now suppose the fluid is brought into motion by a process that conserves both Π
and total buoyancy B+b. An example is excitation of internal waves by the oscillation
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APV and wave-averaged quasi-geostrophic flow 405

of flexible boundaries. Because both PV and total buoyancy are conserved on fluid
elements, the resting functional relationship is preserved, implying that in the moving
state

Π = f0F (B+ b). (3.2)

The functional relation (3.2) characterizes a special situation where the PV signature
in the fluid arises solely from internal wave advection of the resting, non-uniform PV
distribution, f0B′ = f0N2(z). In this special case, the PV does not have a separate
evolution equation, and is entirely determined through (3.2) by the buoyancy
perturbation b of the wave field.

Our aim is a description of flows with PV that is free to evolve independently from
the rest-state relation (3.2), while avoiding the strenuous bookkeeping required to track
the Eulerian advection of the non-uniform background state. We thus define the APV,
Q(x, t), as the difference between the total PV and the PV arising by advection of the
background buoyancy field,

Q def= Π − f0F (B+ b). (3.3)

The construction in (3.3) is analogous to the definition by Holliday & McIntyre (1981)
of available potential energy. By shedding the part of Π that is trivially related to
buoyancy through (3.1), APV isolates the part of Π available to balanced-flow
evolution.

Unfurling the components of Π in (2.8), the APV becomes

Q=N2(ω+ βy)+ (f0 + βy)bz +ω · ∇b+ f0[F (B)−F (B+ b)], (3.4)

where ω def= vx − uy is the vertical component of the vorticity ω. Because Π , B + b
and therefore f0F (B+ b) in (3.3) are material invariants, the APV is also a material
invariant:

DQ
Dt
= 0. (3.5)

Unlike the Ertel PV, APV is zero for a fluid at rest with ω= b= 0 and β = 0. And
APV is zero in the thought experiment surrounding (3.2). In general, however, Q is
non-zero.

The QG approximation is based on a scaling that assumes relatively small vertical
displacements, which implies b� B and that (3.4) can be expanded to yield

Q = N2(ω+ βy)+ (f0 + βy)bz +ω · ∇b− f0b F ′(B)− 1
2 b2F ′′(B)+O(b3), (3.6)

= N2

[
ω+

(
f0b
N2

)

z

+ βy
]
+ω · ∇b− f0Λzz

N2

1
2

b2 +O(b3, βybz), (3.7)

where in (3.7) we have defined

Λ
def= ln N2. (3.8)

In passing from (3.6) to (3.7) the derivatives F ′(B) and F ′′(B) are expressed in terms
of N2 by taking implicit z-derivatives of the functional relation (3.1). The expansion
in (3.7) is a generalization of the quantity appearing in equation (3.13) of Zeitlin et al.
(2003) in their theory of nonlinear geostrophic adjustment.

The term in square brackets in (3.7) is the familiar QGPV. Note that QGPV
cannot be obtained from Π by merely assuming quasi-geostrophic balance, which
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406 G. L. Wagner and W. R. Young

produces the incorrect expression (f 2
0 /N

2)ψzz for the vortex stretching term rather
than the correct ∂z[(f 2

0 /N
2)ψz]. In the standard derivation, the correct form of QGPV

is completed by advection of the large z-dependent background PV by ageostrophic
vertical velocity. But using APV, the derivation of QGPV from (3.7) is immediate:
QGPV is the leading-order term in a low-Rossby-number expansion of APV.

APV thus has both conceptual and computational utility. Conceptually, the exact,
unaveraged APV can be viewed as a generalization of QGPV, which implies that
Eulerian Ertel PV may not be the most relevant physical quantity for describing
flow evolution on a non-uniform background state. Computationally, APV provides
essential simplifications in the derivation of wave-QG by removing distractingly large
fluctuations in PV from our Eulerian reference frame.

4. An expansion in wave amplitude
4.1. Linearity of the leading-order solution

To derive wave-QG, we adopt a scaling that assumes small-amplitude flow and
develop parallel expansions of the Boussinesq system (2.2)–(2.6) and the APV
equation (3.5). We assume the balanced flow is weak, in that internal waves comprise
the leading-order solution, while balanced flow is described only at next order
alongside quadratic wave quantities.

We denote the characteristic horizontal velocity of the waves by Ũ, the characteristic
length scale of the flow by L, and assume that the characteristic time scale is given
by the Coriolis frequency f0. The linearity of the wave field then requires that

ε
def= Ũ

f0L
(4.1)

is much less than unity. We use the small parameter ε, which is a measure of wave
amplitude analogous to steepness for surface waves, to distinguish each level of
approximation in the development of the Boussinesq and APV equations.

4.2. The Rossby number and ‘two-timing’
We use a common vertical scale H and common horizontal length scale L for both the
internal waves and the balanced flow. While this scaling ultimately limits attention to
hydrostatic internal waves, it otherwise retains generality in the derivation, allowing
both for consideration of comparable wave-mean spatial scales as well as further
approximation based on spatial-scale separation.

If we denote the characteristic velocity of the balanced flow by Ū, the assumption
of weak balanced flow is expressed by the scaling Ū = εŨ. The Rossby number of
the balanced flow is then

Ro def= Ū
f0L
= ε2. (4.2)

The Rossby number is a measure of time-scale separation between fast wavy
motions oscillating on f−1

0 and the slower balanced-flow evolution over L/Ū. To
construct a single system of equations that captures the fast wave oscillations as well
as the slow evolution of balanced flow, we use a multiple-time-scale expansion with
‘fast’ time t̃= f0t and slow time t̄= tŪ/L, so that

∂t→ f0(∂ t̃ + ε2∂ t̄). (4.3)
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APV and wave-averaged quasi-geostrophic flow 407

This ‘two-timing’ also necessitates the introduction of an ‘average over the fast time’,
which we denote with an overbar. If φ(x, t) is any field, then

φ̄(x, t) def= 1
T

∫ t+T/2

t−T/2
φ(x, t) dt, where

1
f0
� T� L

Ū
. (4.4)

The wavy part of φ, denoted φ̃, is defined via

φ = φ̄ + φ̃. (4.5)

The averaging or filtering operation in (4.4) is not unique. Alternatively we can view
the overbar as a filtering operation that, in principle, removes wave time scales from
φ exactly.

We assume that φ̄ has no dependence on the fast time t̃ and that the average of
the wavy fields is zero, or equivalently that ¯̄φ = φ̄. In the context of the perturbation
expansion, this amounts to an assumption that average quadratic properties of the
wavy fields – for example the Stokes velocity or average wave energy – evolve on the
slow time scale L/Ū. Our focus on mean flow evolution means that the multiple-scale
expansion in (4.3) neglects the nonlinear wave evolution time scale L/Ũ = (εf0)

−1,
which is intermediate between f−1

0 and L/Ū = ε2f−1
0 .

4.3. The non-dimensional Boussinesq and APV equations
We non-dimensionalize the Boussinesq equations with the two time scales in (4.3), the
horizontal scale L and vertical scale H such that

(x, y)= L(x̂, ŷ) and z=Hẑ, (4.6a,b)

where the ‘hat’ decoration denotes a non-dimensional quantity. We assume that the
vertical and horizontal scales are related by

Bu def=
(

N0H
f0L

)2

= 1, where N(z)=N0N̂(z), (4.7)

and Bu is the Burger number. In (4.7), N0 is the characteristic magnitude of the
buoyancy frequency N(z). Bu = 1 is standard scaling in the quasi-geostrophic
approximation. The flow variables are scaled with

(u, v)= Ũ (û, v̂), w= H
L

Ũ ŵ, b=N0Ũ b̂, p= f0LŨ p̂. (4.8a−d)

β in the Coriolis frequency f = f0 + βy is scaled with

β = Ū
L2
β̂, such that f = f0

(
1+ ε2β̂ ŷ

)
. (4.9)

The scaling in (4.9) ensures that the effect of β arises first in the QGPV equation. The
scaling in (4.7) restricts attention to hydrostatic internal waves, but otherwise does not
restrict wave field spatial scales.
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408 G. L. Wagner and W. R. Young

We use these definitions to non-dimensionalize the Boussinesq equations and lighten
the notation by dropping all decorations except for those on the fast time scale t̃ and
slow time scale t̄. The non-dimensionalized Boussinesq equations then become

u t̃ − v + px =−ε u · ∇u− ε2u t̄ + ε2βyv, (4.10)
v t̃ + u+ py =−ε u · ∇v − ε2v t̄ − ε2βyu, (4.11)

pz − b=−(αε)2[w t̃ + ε u · ∇w+ ε2w t̄], (4.12)
b t̃ +wN2 =−ε u · ∇b− ε2b t̄, (4.13)

∇ · u= 0, (4.14)

where in the vertical momentum equation we have introduced α def= H/(εL). To justify
the hydrostatic approximation, α is fixed at order unity as ε→ 0.

APV is scaled with N2
0 Ũ/L, so that from (3.7) the non-dimensional APV becomes

Q=N2

[
vx − uy +

(
b

N2

)

z

]
+ ε

[
N2βy+ω · ∇b− Λzz

N2

1
2

b2

]
+O(ε2), (4.15)

where Λ= ln N2 and

ω=−vzx̂+ uzŷ+ (vx − uy)ẑ+O(ε2) (4.16)

is the vorticity. The scaled APV evolution equation from (3.5) is

Q t̃ + ε u · ∇Q+ ε2Q t̄ = 0. (4.17)

Each field is expanded in powers of ε so that, for example, u= u0 + εu1 + · · · . We
proceed order by order, using dimensional variables for clarity but employing the non-
dimensional equations (4.10)–(4.17) to guide the development.

4.4. Leading order: internal waves
The leading-order system is linear and describes hydrostatic internal waves,

u0 t̃ − f0v0 + p0x = 0, (4.18)
v0 t̃ + f0u0 + p0y = 0, (4.19)

p0z = b0, (4.20)
b0 t̃ +w0N2 = 0, (4.21)
∇ · u0 = 0. (4.22)

We eliminate quasi-steady solutions – the balanced vortical mode – by insisting that
the average of all leading-order fields is zero:

ū0 = v̄0 = w̄0 = b̄0 = p̄0 = 0. (4.23)

The leading-order wave particle displacement, ξ0 = ξ0 x̂+ η0 ŷ+ ζ0 ẑ, is defined by

ξ0 t̃ = u0 and ξ̄0 = 0. (4.24a,b)

Some important identities involving the wave particle displacement follow from the
leading-order system (4.18)–(4.22): the vertical vorticity equation, which is formed by
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subtracting ∂y of (4.18) from ∂x of (4.19), can be manipulated using ∇ · ξ0 = 0 and
integrating over t̃ to find

v0x − u0y = f0ζ0z. (4.25)

Integration of the buoyancy equation (4.21) yields

b0 +N2ζ0 = 0. (4.26)

And then, eliminating the vertical displacement ζ0 between (4.25) and (4.26), we find
the leading-order APV is zero:

N−2Q0 = v0x − u0y +
(

f0b0

N2

)

z

, (4.27)

= 0. (4.28)

The conclusion that Q0= 0 follows alternatively by integrating the leading-order APV
equation, Q0 t̃ = 0, and applying (4.23) to determine that the constant of integration
is zero. The leading-order fields thus constitute internal waves oscillating on the fast
time scale t̃ and with no signature in the APV field.

We emphasize the importance of the fact that Q0= 0. Note that the first-order Ertel
PV, Π1=N2(v0x−u0y)+ f0b0z, is not zero for internal waves described by (4.18)–(4.22)
– unless Nz = 0 and the background PV is therefore uniform. That the leading-order
wave field has PV, but no APV, is the first indication of APV’s utility in this problem.
Increasingly important but less obvious simplifications follow at subsequent orders in
the APV equation expansion.

4.5. First order: balanced flow and quadratic wave terms
The first-order fields are governed by

u1 t̃ − f0v1 + p1x =−u0 · ∇u0, (4.29)
v1 t̃ + f0u1 + p1y =−u0 · ∇v0, (4.30)

p1z − b1 = 0, (4.31)
b1 t̃ +w1N2 =−u0 · ∇b0, (4.32)

∇ · u1 = 0. (4.33)

Because the first-order fields are permitted to have non-zero time-averages, (4.29)–
(4.33) provide the definition of wave-averaged quasi-geostrophic balance.

Before proceeding in the derivation of (1.1)–(1.3), we observe that (4.29)–(4.33)
also describe slow, nonlinear wave evolution due to wave self-interaction. Such slow
wave evolution occurs when the right-side forcing resonates with the left-side linear
internal wave operator (Müller et al. 1986). As we do not describe wave evolution in
this paper, we ignore this possibility. However, a consistent description of the coupled
evolution of wave and balanced flow requires treatment of nonlinear wave field self-
interaction and careful accounting of time scales involved. In particular, wave self-
interaction produces a time scale (εf0)

−1, intermediate between the linear-wave and
balanced-flow evolution scales f−1

0 and ε2f−1
0 accounted for here. Including the time
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scale (εf0)
−1 does not significantly change the basic result of this paper, but would

require filtering (εf0)
−1 from (1.1) through (1.3) to produce a consistent description

of balanced-flow evolution.
Averaging equations (4.29)–(4.33) over f−1

0 and rearranging terms, we can
suggestively write the first-order mean velocities and averaged quadratic wave
quantities as

f0 (ū1 + uw)=−∇× p̄1ẑ=−p̄1y x̂+ p̄1x ŷ, (4.34)

where the wave velocity uw is defined by

uw def= f−1
0 u0 · ∇v0 x̂− f−1

0 u0 · ∇u0 ŷ+N−2u0 · ∇b0 ẑ. (4.35)

In appendix A we show that uw can be written in terms of more familiar wave-
averaged properties as

uw = uS + f−1
0 ∇× 1

2 pSẑ, (4.36)

where
uS def= (ξ0 · ∇) u0 and pS def= ξ0 · ∇p0 (4.37a,b)

are the Stokes corrections to mean velocity and pressure fields (Craik 1988; Bühler
2009). Using (4.36) to eliminate uw from (4.34), we obtain the wave-averaged
geostrophic balance condition,

ū1 + uS
︸ ︷︷ ︸

def= uL

=−∇× f−1
0

(
p̄1 + 1

2 pS
)

︸ ︷︷ ︸
def= ψ

ẑ . (4.38)

Notice that w̄=−wS, such that wL = 0. Like standard QG, the vertical component of
the balanced velocity is zero.

The wave-averaged hydrostatic relation follows from (A 9) and (4.38):

f0ψz = b̄1 + ξ0 · ∇b0︸ ︷︷ ︸
def= bL

+ (N2)z
1
2ζ

2
0 . (4.39)

The final term in (4.39) is a Stokes correction associated with the resting buoyancy
distribution B(z) in (2.1); note that (N2)z=B′′. Equation (4.39) relates the Lagrangian-
mean streamfunction to the wave-averaged buoyancy field through wave-averaged
hydrostatic balance.

Equations (4.38) and (4.39) are the wave-averaged balance conditions. Our
derivation of wave-averaged balance shows that the ordinary sense of geostrophic
balance from wave-ignoring QG theory is retained after wave averaging only for the
Lagrangian-mean flow, uL. The Eulerian-mean flow is not balanced.

The appearance of half the Stokes pressure correction in the balance condition (4.38)
is a distinctive feature of the wave-averaged balance equations. The factor 1/2 enters
these basic relations via the quadratic wave identities (A 7)–(A 9). As in the standard
QG approximation, the balance condition in (4.38) is redundant with the continuity
equation, and we must seek an equation for mean-flow evolution at higher orders of
approximation.

We turn to the APV equation (4.17), which at first order is

Q1 t̃ = 0. (4.40)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

IT
 L

ib
ra

ri
es

, o
n 

13
 Ju

l 2
01

7 
at

 2
0:

04
:5

7,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

62
6

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2015.626
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Integrating over t̃, we are compelled to conclude that the first-order APV, Q1, does
not depend on the fast time t̃. In other words, Q̃1 = 0 and

Q1 = Q̄1 =N2

[
v̄1x − ū1y +

(
f0b̄1

N2

)

z

+ βy

]
+ω0 · ∇b0 − f0Λzz

N2

1
2

b2
0. (4.41)

This result – which follows directly from expansion of the APV conservation equation
– produces major simplifications at next order and is not readily apparent from the
first-order Boussinesq equations (4.29)–(4.33).

4.6. Second and third orders: an evolution equation for Q1

We proceed to higher orders only in the APV equation (4.17). At second order, the
APV equation is

Q2 t̃ + u0 · ∇Q1 = 0. (4.42)

Because Q1 is independent of the fast time t̃, we can integrate (4.42) to yield

Q2 =−ξ0 · ∇Q1 + Q̄2, (4.43)

where ξ0 is the wave particle displacement defined in (4.24) and Q̄2(x, t̄) is an
unknown and inconsequential function of integration.

At third order the APV equation (4.17) is

Q1 t̄ +Q3 t̃ + u0 · ∇Q2 + u1 · ∇Q1 = 0, (4.44)

while its wave average is

Q1 t̄ + ū1 · ∇Q1 + u0 · ∇Q2 = 0. (4.45)

Notice that Q1 is independent of the fast time and therefore stays outside of
the averaging operation in (4.45). To manipulate the third term in (4.45) we use
integration by parts and indicial notation, where φ,i denotes the ith derivative of φ
and summation over repeated indices is implied. Using the expression for Q2 in (4.43)
and ū0 = 0, we find

u0 · ∇Q2 = u0iQ2,i =−u0i
(
ξ0jQ1,j

)
,i, (4.46)

= −u0iξ0j,iQ1,j, (4.47)

= uS
· ∇Q1. (4.48)

In passing from (4.46) to (4.47) we have used the fact that

u0iξ0j Q1,ij = 0, (4.49)

which follows from the antisymmetry of u0iξ0j and the symmetry Q1,ij. Thus there is
no ‘diffusive’ term in (4.48) and the wave-averaged third-order APV equation (4.45)
is

Q1 t̄ + uL
· ∇Q1 = 0, (4.50)

where uL is the Lagrangian-mean velocity in (4.38). In analogy with the standard and
unaveraged QG theory in which potential vorticity is attached to particle trajectories,
here the mean APV, Q1, is attached to mean particle trajectories determined by the
balanced Lagrangian-mean velocity uL.
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4.7. Quasi-geostrophic potential vorticity
To make the connection between (4.50) and conservation of the familiar QGPV we
introduce

q def= Q1

N2
, (4.51)

and rewrite (4.50) as
q t̄ + J(ψ, q)= 0. (4.52)

Recalling the expression for Q1 in (4.41), and using the balance conditions in (4.38)
and (4.39) to replace ū1 by ψ and pS, the wave-averaged QGPV is

q= (1+ L)ψ + βy+ qw, (4.53)

where operators 1 and L are defined in (1.2). The wave contribution to q in (4.53)
is

qw = ω0 · ∇b0

N2
− vS

x + uS
y −
(

f0
1
2 pS

z

N2

)

z

− f0Λzz
1
2
ζ 2

0 . (4.54)

A slew of quadratic wave identities implied by (4.18)–(4.22) allow qw to be written
in many equivalent forms. Some are more compact than (4.54), and to make contact
with BM we show in appendix B that

qw = J(u0, ξ0)+ J(v0, η0)+ f0J(ξ0, η0)︸ ︷︷ ︸
−ẑ · ∇× p

+ 1
2 f0
(
ξ0iξ0j

)
,ij , (4.55)

where p, defined in (B 7), is the leading-order internal wave pseudomomentum
introduced by Andrews & McIntyre (1978).

The result in (4.55) indicates agreement between our Eulerian derivation and the
BM GLM derivation. The main difference is that BM assumes a slowly varying wave
field; in that case the ‘wave-averaged vortex stretching’ f0(ξ0iξ0j),ij/2, on the right of
(4.55) with two external derivatives, is smaller than ẑ · ∇× p appearing in (4.55) as
well as equations (1.4) and (9.29) in BM. If spatial-scale separation is not assumed,
the GLM-derived formulation also contains f0(ξ0iξ0j),ij/2 (Holmes-Cerfon, Bühler &
Ferrari 2011).

We identify two distinct parts of qw: the ‘pseudovorticity’, ẑ · ∇× p, and
wave-averaged vortex stretching f0(ξ0iξ0j),ij/2. The appearance of pseudovorticity,
a relative vorticity term that appears in wave-averaged circulation integrals, is a
subtle and purely kinematic consequence of wave averaging: total wave-averaged
fluid vorticity is ẑ · ∇×(uL − p), rather than ẑ · ∇×uL or ẑ · ∇× ū. A demonstration
of this kinematic fact is given in § 10.2.7 of Bühler (2009) for non-rotating fluids
and finite particle displacements.

The wave-averaged vortex stretching f0(ξ0iξ0j),ij/2, on the other hand, is a
vortex stretching term that depends on spatial gradients in the mean-square wave
displacement tensor ξ0iξ0j. Wave-averaged vortex stretching reflects the expansion
and contraction of ‘wave-averaged fluid elements’ due to non-zero divergence
of uL and thus of wave-averaged particle trajectories in non-uniform wave fields
(McIntyre 1988). Such expansion and contraction contributes to the PV balance in
rotating flow. Wave-averaged vortex stretching is the only wave contribution to q in
two-dimensional flow, and in § 5 we show that wave-averaged vortex stretching is
the leading-order wave contribution to the PV balance for a mode-one, horizontally
modulated internal wave.
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4.8. Boundary conditions
Boundary conditions for the wave-averaged QG equation (4.52) follow from evaluation
of the buoyancy equation (4.13) on the boundaries. We assume flat bounding surfaces
in z so that w= 0 in (4.13). We then expand (4.13) in powers of ε and recapitulate
the expansion of the APV equation (4.17). The leading-order buoyancy equation,
b0 t̃ = 0, implies that b0 = 0 and ζ0 = 0 at the boundaries. At ε1 we find that b1
does not depend on the fast time t̃ such that b1 = b̄1. At order ε2 we integrate
over the fast-time variable to obtain b2 =−ξ0 · ∇b̄1. At order ε3 we find in analogy
with the calculation surrounding (4.45) that b̄1 is advected by the Lagrangian-mean
velocity uL. Finally, because b0 = ζ0 = 0, the Stokes corrections in the wave-averaged
hydrostatic relation (4.39) vanish on the boundaries, so that f0ψz = b̄1. Thus the
wave-averaged QG boundary condition is

ψz t̄ + J(ψ, ψz)= 0. (4.56)

This is the standard QG boundary condition: there is no explicit wave-averaged
contribution.

5. Wave-induced mean motion
The wave-averaged PV in (4.53) implies that internal waves induce balanced mean

flows. We illustrate this by considering a scenario in which a wave packet propagates
into previously quiescent fluid with β = 0 and zero APV, or q= 0. With q= 0 in the
undisturbed state, the PV equation (4.52) reduces to

(1+ L) ψ =−qw. (5.1)

Equation (5.1) is an elliptic equation that determines the mean streamfunction, ψ ,
induced by an arbitrary hydrostatic internal wave field associated with the vorticity
source qw defined in (4.55). The wave-induced mean motion satisfies wave-averaged
geostrophic balance, has no APV, and is slaved to the wave field. An expanded form
of qw is

qw = J(u, ξ)+ J(v, η)+ f0J(ξ , η)

+ f0

2

[
(ξ 2)xx + (η2)yy + (ζ 2)zz + 2(ξη)xy + 2(ξζ )xz + 2(ηζ )yz

]
. (5.2)

The subscript ‘0’ on wave fields will be omitted for the remainder of this paper.
We investigate the consequences of (5.1) by contrasting ψ and uL induced in a

vertically bounded domain by a vertically propagating plane-wave packet (‘plane’)
with ψ and uL induced by a horizontally propagating wave packet with mode-one
vertical structure (‘mode’).

5.1. The Bretherton flow: mean motion induced by a vertically propagating
plane wave

Bretherton (1969) considered the mean motion induced by a vertically propagating
plane internal wave packet in a non-rotating fluid. Here, we consider the rotating case
by solving (5.1). The pressure field associated with the plane-wave packet is

p|plane = a(x, y, z, t) cos(kx+mz− σ t), (5.3)

where k and m are horizontal and vertical wavenumbers, σ is frequency and a is
a three-dimensional envelope function with horizontal scale ` and vertical scale d.
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Vertically propagating plane-wave field Mode-one wave field

θ
def= kx+mz− σ t φ

def= kx− σ t
a = A e−(x/2`)2−(y/`)2−([z+H/2]/d)2 a = A e−(x/2`)2−(y/`)2

p = a cos θ p = a h1 cos φ

u ≈ a
m2σ

kN2
cos θ u ≈ a

σκ2
1

kf 2
0

h1 cos φ

−f0ξ = v ≈ a
m2f0

kN2
sin θ −f0ξ = v ≈ a

κ2
1

kf0
h1 sin φ

w ≈ −a
mσ
N2

cos θ w ≈ −a
σ

N2
h′1 sin φ

−ζN2 = b ≈ −a m sin θ −ζN2 = b = a h′1 cos φ

η ≈ a
m2f0

kN2σ
cos θ η ≈ a

κ2
1

kf0σ
h1 cos φ

qw ≈
(

1
2

a2

)

y

m4σ

kN4
qw ≈ a2 κ

2
1

2f 3
0

L
[

1
2

h2
1

]

TABLE 1. Pressure, buoyancy, velocity, particle displacements and qw for mode-one and
vertically propagating plane-wave fields. The symbol ≈ is used for relationships that hold
to leading order in µ.

The scale-separation parameter is

µ
def= 1

k`
. (5.4)

We assume a is slowly varying so that µ� 1 and (dm)−1 ∼µ� 1.
Because µ� 1, we drop y-derivative terms from (4.18) through (4.22) to compute

u, ξ and b associated with p in (5.3). These expressions are accurate to O(µ) and
listed in table 1. A particularly useful result is the reduction of (4.19) to

v + f0ξ =O(µv). (5.5)

With u and ξ , we compute qw to leading order in µ. Assuming σ/f0=O(1), the slow
variation of a in x, y and z implies that

f0
(
ξiξj
)
,ij

J(u, ξ)
∼µ. (5.6)

Using (5.5), the three Jacobian terms in (5.2) scale with

J(v + f0ξ, η)

J(u, ξ)
∼µ. (5.7)

Thus, neglecting the eight O(µ) terms in (5.2), the wave-averaged PV contribution qw

associated with (5.3) reduces to

qw|plane ≈ J(u, ξ), (5.8)

≈ a ay
m4σ

kN4
. (5.9)

This is the conclusion reached by BM in their equation (9.22).
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FIGURE 1. (Colour online) Visualization of the vertically propagating plane wave (a) and
horizontally propagating mode-one wave (b) with isosurfaces of pressure, p, at 0.325 and
−0.325 of its maximum value. Wave fields are listed in table 1. A surface in the yz-
plane show the magnitude of wave-induced uL plotted in figure 2. A surface in the xy-
plane shows streamlines of uL plotted in figure 3. Grey arrows indicate the direction of
wave group propagation. Physical parameters are f0 = 10−4 s−1, N = 2 × 10−3 s−1, σ =
2f0, H= 4× 103 m. The plane-wave vertical wavenumber is m= (16πH)−1, the horizontal
wavenumbers are k = mf0

√
3/N for the plane wave and k = κ1

√
3 = π

√
3f0/NH for the

mode, and the scale-separation parameter is µ= (`k)−1 = (dm)−1 = 1/4.

We make the implications of (5.9) concrete by picking the envelope

a|plane = A exp[−(x/2`)2 − (y/`)2 − ([z+H/2]/d)2]. (5.10)

We solve (5.1) for ψ given (5.10) and (5.9) with a spectral method, using Fourier
collocation in (x, y) and modal collocation in z with constant-N vertical modes
hn= cos(nπz/H). Figure 1(a) visualizes the wave field associated with (5.10) and the
caption of figure 1 lists the physical parameters used to make figures 1–3.

The mean motion implied by (5.10) and (5.9) is depicted in figures 2 and 3.
Figure 2(a) plots uL on a vertical plane in (y, z) which divides the plane-wave
packet, revealing the dipolar horizontal structure of uL and its vertical coincidence
with the wave envelope. Figure 3(a) plots streamlines of uL in an xy-plane at
z=−H/2, showing that the plane wave uL resembles a vortex dipole in the horizontal.
Colour-filled contours indicate the magnitude of uL and a dotted line outlines the
plane-wave envelope.

Figure 3(b) compares the x-components of the Lagrangian-mean uL and Stokes
velocity uS on a line in y through (x, z)= (0,−H/2). The x-component of uS defined
in (4.37) is

uS def= ξ · ∇u= ξux + ηuy + ζuz. (5.11)

Integration by parts and use of ux ≈−wz implies that ξux + ζuz ≈ (uζ )z, and (uζ )z ≈
O(µζuz) follows from the quadrature of u and ζ for the packet. Thus

uS|plane ≈ ηuy, (5.12)

≈ a ay
m4f0

2k2N4
. (5.13)
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0

–0.2

–0.4

–0.6

–0.8

–1.0
–10 –5 0

ky ky
5 10 –10 –5 0 5 10

0

–0.2

–0.4

–0.6

–0.8

–1.0

–1.0 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1.0

(a) (b)

FIGURE 2. (Colour online) Vertical structure of wave-induced mean flows at x = 0 for
a vertically propagating plane wave (a) and vertical mode-one wave (b). Colour-filled
contours show uL = −ψy normalized by its extreme value, isopycnals are in light grey,
and dark grey dashed lines show wave envelopes with contours of a/2. The plane-wave
packet induces a dipolar uL while the mode-one wave induces a monopolar, mode-two
eddy-like uL. Parameters are listed in the caption of figure 1.

Figure 3(b) indicates that uL � uS at (x, z) = (0, −H/2). This result can be
anticipated with a scaling argument. The scaling of uS is relatively simple: because
η∼ f0u/σ 2 and uy ∼ u/`,

uS|plane ∼ u2f0

σ 2`
. (5.14)

The scaling for uL requires (5.1). Scaling terms on the left of (5.1) gives

1ψ ∼ ψ
`2

and Lψ ∼ f 2
0ψ

(Nd)2
=
(

f0m
Nk

)2
ψ

`2
, (5.15a,b)

where we have used both `= (µk)−1 and d= (µm)−1 to obtain the rightmost term. For
moderately super-inertial waves with ( f0m/Nk)2 ≈ O(1), 1ψ and Lψ scale similarly,
and from (5.1) we obtain ψ ∼ `2qw and ψ/`∼ uL ∼ `qw. The scaling for qw follows
more simply: with ux ∼ ku and ξy ∼ u/σ` we deduce that

qw|plane ∼ u2 k
σ`

and uL|plane ∼ u2 k
σ
. (5.16a,b)

Putting the pieces together and remembering that k`=µ−1 yields

uL

uS

∣∣∣∣
plane

∼ σ

µf0
. (5.17)

The plane-wave Lagrangian-mean flow is O(µ−1) larger than the Stokes velocity and
the Eulerian mean flow is ū≈ uL to leading order in µ.
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FIGURE 3. (Colour online) Top-down xy-view at z = −H/2 of mean flows induced by
the vertically propagating plane wave (a,b) and vertical mode-one wave (c,d). (a,c) Solid
grey lines are streamlines of uL, colour-filled contours show normalized flow magnitude
|uL|, and dark grey dashed lines show wave envelopes with contours of a/2. (b,d) uL and
uS are plotted versus y on a line at (x, z)= (0,−H/2), both normalized by the maximum
magnitude of uL. The x-axes of (b,d) are different for mode and plane wave: uL dominates
for the plane wave, while uS dominates for the mode-one wave. Parameters are listed in
the caption of figure 1.

5.2. Mean motion induced by a vertical mode-one internal wave
We contrast the plane-wave-induced mean motion with the flow induced by a domain-
filling, vertical mode-one internal wave. In an ocean of depth H, the vertical modes
are the eigenfunctions hn(z) that satisfy

Lhn + κ2
n hn = 0 with h′n = 0 at z= 0 and z=−H, (5.18)

where κ−1
n is the Rossby deformation length for mode n and L is the second-order

linear operator defined in (1.1). When N is constant, the vertical modes are hn =
cos(nπz/H) with deformation length κ−1

n = NH/nπf0. We consider a mode-one wave
pressure field of the form

p|mode = a(x, y, t) h1(z) cos(kx− σ t), (5.19)

where k is horizontal wavenumber, σ is frequency and a is a slowly varying envelope
function with horizontal scale `. We assume 1/k`=µ� 1 as in (5.4), which permits
easy computation of u, ξ and b given in table 1 from equations (4.18)–(4.22).

With u and ξ we compute the mode-one qw to leading order in µ. The mode-one
vertical structure implies that the terms in (5.2) scale differently than for the plane
wave. In particular,

J(u, ξ)

f0(ζ 2)zz

∼µ. (5.20)
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Moreover, because (5.5) and (5.7) apply also for the mode, none of the Jacobian,
pseudomomentum-associated terms contribute to qw at leading order. Among the
remaining terms on the second line of (5.2), the assumptions µ� 1 and σ/f0 =O(1)
imply

(ηζ )yz

(ζ 2)zz

∼µ and
(ξ 2)xx + (η2)yy

(ζ 2)zz

∼µ2. (5.21a,b)

Finally, the quadrature of (ξ , ζ ) and (η, ξ) and the fact that µ� 1 imply
(
ξζ
)

xz +
(
ηξ
)

xy

(ζ 2)zz

∼µ2. (5.22)

The only survivor at leading order from qw in (5.2) is therefore f0(ζ 2)zz/2, and the
mode-one qw is

qw|mode ≈ 1
2 f0(ζ 2)zz , (5.23)

≈ −a2 κ
2
1

2f 3
0

L
[

1
2

h2
1

]
. (5.24)

The final expression in (5.24) is found using ζ from table 1 along with Lh1=−κ2
1 h1.

For a slowly varying mode-n wave, qw follows by replacing ‘1’ with ‘n’ in (5.24).
We investigate the consequences of (5.24) by choosing the envelope

a|mode = A exp[−(x/2`)2 − (y/`)2]. (5.25)

As for the vertically propagating plane wave, we solve (5.1) for ψ with qw determined
by (5.25) and (5.24), using a spectral method. For the mode-one wave with constant N,
ψ is mode-two and thus proportional to cos(2πz/H). The wave field associated with
(5.25) is visualized in figure 1(b) and the mean motion it induces is illustrated in
figures 2 and 3.

Figure 2(b) shows the mode-two vertical structure of uL, and figure 3(c) reveals the
horizontally compact and monopolar form of uL. Figure 3(d) compares uL with the
Stokes velocity correction uS for the mode-one wave, where uS is defined in (4.37)
and (5.11). Unlike the plane wave uS in (5.13), in the mode-one wave field (uζ )z is
larger than ηuy by O(µ), and thus

uS|mode ≈
(
uζ
)

z , (5.26)

≈ −a2 σκ
2
1

2kf 4
0

L
[

1
2

h2
1

]
. (5.27)

The Stokes velocity correction does not involve spatial derivatives of the envelope
a(x, y, t).

Figure 2(b) indicates that uS� uL at (x, z)= (0,−H/2) for the mode-one wave: the
reverse of the relationship found for the plane-wave case. This fact can be deduced
with a scaling argument. First, ξ ∼ u/σ and ζz ≈−ξx imply ζ ∼Hkξ , such that

uS|mode ∼ ku2

σ
. (5.28)
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That the mode uS scales with k rather than 1/` contrasts with the plane-wave case.
Next, from (5.1),

1ψ ∼ ψ
`2
, but Lψ ∼ κ2

1ψ =
1

(µ`)2

(κ1

k

)2
ψ. (5.29a,b)

Assuming moderately super-inertial waves for which (κ1/k)2≈O(1), we conclude that
Lψ is O(µ−2) larger than 1ψ . Therefore, ψ ∼ (µ`)2qw and ψ/`∼ uL∼µ2`qw. Again
using the fact that ζ ∼Hkξ , we then find

qw|mode ∼ f0

(
ku
σ

)2

and uL|mode ∼ µ u2 kf0

σ 2
. (5.30a,b)

Dropping the parts into place yields

uL

uS

∣∣∣∣
mode

∼ µ f0

σ
, (5.31)

which means the Lagrangian-mean flow is O(µ) smaller than the Stokes velocity field.
This implies further that, to leading order in µ, the Eulerian-mean flow is

ū≈−uS. (5.32)

This Eulerian-mean ū is an ‘anti-Stokes flow’. The Lagrangian-mean flow, which is
relevant for potential vorticity advection, is a small residual remaining after the large
cancellation in (5.32) and is O(µ) smaller for the mode-one wave than for the plane
wave.

The fact that Lψ is much larger than 1ψ for the mode-one wave is striking and
means that the primary averaged effect of slowly varying, vertical-mode waves is
a slight displacement of isopycnals. The isopycnal displacement is associated with
a balanced flow when the wave field is spatially non-uniform. Equivalent to this
physical explanation is the statement that the APV equation (5.1) can be solved
by neglecting 1ψ and ‘cancelling the L’ between Lψ and qw in (5.24). We must
subtract the barotropic part of h2

1, since the vertical average of (5.1) implies ψ has
no barotropic component. This yields

ψ ≈ a2κ2
1

4f 3
0

[
1
H

∫ 0

−H
h2

1 dz− h2
1

]
. (5.33)

Equation (5.33) is valid for general stratification profiles N(z) and vertical modes
hn when the 1 are replaced by n. For slowly varying vertical mode waves, the
streamlines of the wave-induced mean motion follow the contours of a2, which
explains the monopolar mode-induced motion evident in figure 3.

6. Discussion
The wave-QG theory in (1.1)–(1.3), first derived for constant stratification and

small-scale waves by Bühler & McIntyre (1998), is a correction to standard
quasi-geostrophy that accounts for the averaged effects of strong internal waves
on balanced planetary flows. The extension of wave-QG to non-constant stratification
is non-trivial and motivates the introduction of a new material invariant: the available
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potential vorticity, or APV. APV is on one hand a useful computational tool in that it
separates waves and balanced flow in Eulerian reference frames. On the other hand,
the conceptual significance of APV is suggested by the immediate emergence of
QGPV from APV as the leading-order term in a low-Rossby-number expansion.

The effect of internal waves on balanced flow is expressed concisely in qw, the
wave contribution to potential vorticity in (1.3). We identify two distinct parts of
qw: the vertical component of ‘pseudovorticity’, ẑ · ∇× p, and wave-averaged vortex
stretching f0(ξiξj),ij/2. Both terms have essentially kinematic origins. As shown in
§ 10.2.7 of Bühler (2009), pseudovorticity is a relative vorticity term that appears
in wave-averaged circulation integrals over material contours in arbitrary oscillatory
flow. Equivalently, it arises in the wave-averaged integral of vorticity over a material
surface. Pseudovorticity therefore can be interpreted fundamentally as the part of
vorticity that is ‘hidden’ by wave averaging: the total vorticity is the sum of the
vorticity of wave-averaged velocity, 1ψ , minus the pseudovorticity ẑ · ∇× p.

Wave-averaged vortex stretching, f0(ξiξj),ij/2, on the other hand, is a vortex
stretching term that appears in wave-averaged integrals over material volumes in
oscillatory and incompressible flow. Thus the non-divergence of exact and unaveraged
particle trajectories does not ensure non-divergence for wave-averaged particle
trajectories, a point that is developed clearly by McIntyre (1988). While small
compared to pseudovorticity for nearly plane waves, wave-averaged vortex stretching
is leading order for a vertical mode-one wave, and is the only part of qw that remains
in two-dimensional flow in (x, z).

The form of (1.1)–(1.3) suggests that energy transfer occurs generally between pre-
existing waves and pre-existing mean flow, as demonstrated for near-inertial waves
by Xie & Vanneste (2015). Wave-QG also implies that wave-induced balanced flows
exist even in the absence of potential vorticity, or if q= 0 everywhere and ψz = 0 at
boundaries. However, this balanced flow is determined instantaneously and completely
by the wave field, is not associated with energy transfer from waves to balanced flow,
and has no independent evolution.

A major missing piece from wave-QG is a description of slow wave evolution which
couples to (1.1)–(1.3). To this point such evolution has been described only for near-
inertial waves by Xie & Vanneste (2015). A potential complication is wave–wave
nonlinear interaction, which can lead to wave evolution on the time scale (εf0)

−1:
slower than the wave frequency time scale but faster than the mean flow evolution
time scale. In this case, careful averaging is required to separate time scales and
ensure that neither f−1

0 nor (εf0)
−1 appears in (1.1)–(1.3).

The complications incurred by nonlinear wave evolution reinforce the assertion
that wave evolution equations are an important component of any consistent, reduced
description of flows comprising both strong waves and APV. Strong internal waves
and balanced flow cannot be considered independent superposed components of fluid
motion: instead, waves and balanced flow coevolve in a single interwoven system
with its own unique dynamics.
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Appendix A. Quadratic wave properties
In this appendix we obtain some quadratic properties of solutions to the linearized

Boussinesq equations in (4.18)–(4.22). To lighten the notation we suppress the
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subscript 0 on all fields throughout this appendix. This means that, within this
appendix, u, ξ , p and b refer to the zero-order wavy fields u0, ξ0, p0 and b0 in
(4.18)–(4.22). We frequently use the averaging identity

θφ t̃ =−θ t̃φ, (A 1)

where φ and θ are any of the leading-order wave fields. The derivation of these
quadratic properties requires constant use of the definitions ξ t̃ = u and b=−ζN2.

A.1. The virial equation and the Stokes correction to pressure
The virial equation is obtained by taking the dot product of the wave momentum
equations (4.18)–(4.20) with the particle displacement ξ . The time average of the
result is

pS = u2 + v2 + f0(ξv − ηu)−N2ζ 2, (A 2)

where the leading-order ‘Stokes correction’ (Craik 1988; Bühler 2009) to the pressure
is

pS def= ξ · ∇p. (A 3)

A.2. The ‘gradient virial equation’

Useful identities for ∇pS are obtained from the spatial gradient of the time-averaged
virial equation (A 2). To maximally simplify this gradient, we need further linear-wave
identities. Consider, for example, the x-derivative of pS,

pS
x = ξx · ∇p+ ξ · ∇px. (A 4)

It turns out that the two terms on the right are equal to one another, and thus
individually equal to pS

x/2. We show this by dotting wave momentum equations
(4.18)–(4.20) with ξx and averaging over the fast time. A crucial intermediate result
involving the Coriolis terms is

vξx − uηx = ∂x
(
vξ
)=−∂x (uη) , (A 5)

= 1
2∂x(vξ − uη). (A 6)

Applying averaging identities and forming exact x-derivatives yields the desired result
that ξx · ∇p= pS

x/2, and therefore

1
2 pS

x = ξx · ∇p= ξ · ∇px. (A 7)

In similar fashion, dotting the momentum equations (4.18)–(4.20) with ξy and ξz
produces

1
2 pS

y = ξy · ∇p= ξ · ∇py, (A 8)

and
1
2 pS

z = ξ · ∇pz + (N2)z
1
2ζ

2 = ξz · ∇p− (N2)z
1
2ζ

2. (A 9)

As before, the second right-side identities in (A 8) and (A 9) follow from taking
derivatives of pS defined in (A 3). Replacing pz by −N2ζ in (A 9) produces

1
2 pS

z =−N2
(
ξ · ∇ζ +Λz

1
2ζ

2
)
. (A 10)

The identities in (A 7)–(A 10) are handy expressions for ∇pS.
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A.3. The Stokes velocity correction uS and wave-averaged velocity uw

Recall that the Stokes velocity correction is

uS def= (ξ · ∇)u. (A 11)

We turn now to the wave velocity uw defined in (4.35) as

uw def= f−1
0 u · ∇v︸ ︷︷ ︸

uw

x̂ −f−1
0 u · ∇u︸ ︷︷ ︸
vw

ŷ+N−2u · ∇b︸ ︷︷ ︸
ww

ẑ. (A 12)

Using (A 1) and the leading-order buoyancy equation (4.21), we have

ww = −N−2ξ · ∇bt,

= wS. (A 13)

In contrast to ww, the horizontal components of uw are not equal to those of uS. Using
the leading-order y-momentum (4.19), the x-component of uw can be expressed as

uw = −f−1
0 ξ · ∇vt,

= uS + f−1
0 ξ · ∇py ; (A 14)

the y-component is vw = vS − f−1
0 (ξ · ∇)px. Thus, using (A 7) and (A 8), we have

(uw, vw, ww)= (uS, vS, wS)+ f−1
0

(
1
2 pS

y,
1
2 pS

x, 0
)
. (A 15)

The relationship between the three-dimensional solenoidal vectors uS and uw is
expressed concisely as uw = uS + f−1

0 ∇×(pSẑ/2).

Appendix B. The wave contribution to APV, qw

In this appendix we summarize various expressions for the wave contribution to PV,

qw def= ω · ∇b
N2

− vS
x + uS

y −
(

f0
1
2 pS

z

N2

)

z

− f0Λzz
1
2
ζ 2, (B 1)

introduced in (4.54). The subscript 0 on leading-order wave fields is suppressed
throughout this appendix. We use various wave identities from appendix A.

Using the expression for pS in (A 10), we have
(

f0
1
2 pS

z

N2

)

z

=−ωS − f0ξz · ∇ζ − f0

(
Λz

1
2
ζ 2

)

z

, (B 2)

where ωS def= ξ · ∇ω is the Stokes correction to the vertical vorticity. Note that ωS is
not equal to the vertical vorticity of the Stokes correction to the velocity field, vS

x − uS
y .

Next, using b=−N2ζ , we have

−ω · ∇b
N2

= f0 ω · ∇ζ + f0Λz

(
1
2
ζ 2

)

z

. (B 3)
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With the results in (B 2) and (B 3), and using ω=−vzx̂+ uzŷ+ f0ζzẑ, we manipulate
qw in (B 1):

qw = ωS − vS
x + uS

y + f0ξz · ∇ζ −ω · ∇ζ , (B 4)

= ξy · ∇u− ξx · ∇v + f0ξz · ∇ζ −ω · ∇ζ , (B 5)

= J(u, ξ)+ J(v, η)+ f0ξz · ∇ζ . (B 6)

With the expression for qw in (B 6), we are prepared to show the connection
between qw and pseudomomentum. The pseudomomentum defined in Andrews &
McIntyre (1978) is given to leading order in our case by

pi =−ξj,i

(
uj + 1

2 f0
(
ẑ× ξ)j

)
, (B 7)

where the subscript ‘, i’ denotes differentiation with respect to the ith coordinate. The
wavy particle displacement defined here via ξ t̃=u is equivalent at leading order to the
wavy displacement defined generally in Andrews & McIntyre (1978). The horizontal
components of p are

p1 =−ξxu− ηxv − 1
2 f0
(
ξηx − ηξx

)
, (B 8)

p2 =−ξyu− ηyv − 1
2 f0
(
ξηy − ηξy

)
. (B 9)

In passing from the definition of the pseudomomentum in (B 7) to (B 8) and (B 9) we
have neglected terms ζxw and ζyw, which are smaller by (H/L)2 than the other terms
in p1 and p2. This neglect is consistent with the hydrostatic approximation.

The z-component of the curl of the leading-order pseudomomentum, or ‘pseudo-
vorticity’, is

ẑ · ∇× p = ∂x p2 − ∂yp1, (B 10)

= J(ξ , u)+ J(η, v)+ f0J(η, ξ). (B 11)

Substituting (B 11) into (B 6) we have

qw =−ẑ · ∇× p− f0
[

J(ξ , η)− ξz · ∇ζ
]
. (B 12)

Using ∇ · ξ = ξx+ ηy+ ζz= 0, the term in the square brackets in (B 12) can be written
as

J(ξ , η)− ξz · ∇ζ = ∂(ξ, η)

∂(x, y)
− ξz · ∇ζ , (B 13)

= ∂(ξ, ζ )

∂(x, z)
− ξy · ∇η, (B 14)

= ∂(η, ζ )

∂(y, z)
− ξx · ∇ξ . (B 15)

The average of the three expressions above is

J(ξ , η)− ξz · ∇ζ = 1
3

[
∂(ξ, η)

∂(x, y)
+ ∂(ξ, ζ )
∂(x, z)

+ ∂(η, ζ )
∂(y, z)

]
− 1

3
ξi,jξj,i. (B 16)
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Further, using (∇ · ξ)2 = 0, we find

ξi,jξj,i =
(
ξiξj
)
,ij , (B 17)

= −2
[
∂(ξ, η)

∂(x, y)
+ ∂(ξ, ζ )
∂(x, z)

+ ∂(η, ζ )
∂(y, z)

]
, (B 18)

which implies
J(ξ , η)− ξz · ∇ζ =− 1

2(ξiξj),ij. (B 19)
We can therefore write qw as

qw = 1
2 f0(ξiξj),ij − ẑ · ∇× p. (B 20)

This expression for qw agrees with the GLM-derived results in BM and Holmes-Cerfon
et al. (2011), except that the first term in (B 20) is missing from BM due to their
assumption of slow spatial variation in the wave field. Note that the derivation in BM
and Holmes-Cerfon et al. (2011) assumes constant buoyancy frequency N; evidently,
allowing for general N(z) does not change the result for qw.
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