
Chapter 1

Introduction

How inappropriate to call this planet Earth when it is quite clearly Ocean.

—Arthur C. Clarke

From a certain perspective in space, the Earth seems ocean entire.1 Ocean covers 70.9% of
the Earth’s surface despite billions of years of continental accumulation. In epochs past, there
was only ocean (Ward & Brownlee, 2000).

The ocean’s part in climate and life on Earth surpasses its size. More than 90% of the
heat energy added to the Earth system between 1955 and 2010 is stored in the ocean. This
massive amount of energy corresponds to 36�C of atmospheric warming (Levitus et al., 2012).
Whatever the concerns of mankind, the increase in land surface temperature known as ‘global
warming’ is a minor correction to the changes recorded in our warming ocean.

The many oceanic roles in climate emerge from its kaleidoscopic patchwork of motion:
the froth of white-capping sea and swell, storm-like eddies spinning o↵ the Gulf Stream, and
lumbering internal waves tens to hundreds of meters tall. The ocean’s rotating and density-
stratified dynamics entangle each piece spanning from the planetary to the planktonic, placing
detailed predictions of ocean dynamics far beyond reach of current technology. A necessary step
toward forecasting climate change is thus the development of new models for ocean physics that
are e�cient and approximate yet still physically-based and reliable.

This dissertation contributes to that e↵ort by seeking a deeper understanding of part of
the patchwork: the interweaving of two oceanic motions called ‘internal waves’ and ‘quasi-
geostrophic flow’ with spatial scales of tens to hundreds of kilometers. The methods of this
dissertation are theoretical, consisting mainly of the development of models that isolate the
physics of waves and flow and augmented by a small number of analytical and numerical
examples. It is hoped that further analysis of the models developed in this dissertation will
prove useful in interpreting both observations and numerical simulations and in developing
ever-better models for oceanic circulation and the evolution of Earth’s climate.

1http://eoimages.gsfc.nasa.gov/images/imagerecords/46000/46209/earth pacific lrg.jpg
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2 Waves and flow
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Figure 1.1: Estimates of kinetic energy frequency spectra in three one-year mooring records from the western
Pacific locations shown on the map at left. At right are kinetic energy spectra from upper-ocean and abyssal
instruments on each mooring. Spectral estimates are the ensemble average of spectra from 35 overlapping and
Hamming-windowed 20-day segments extracted from each year-long record. The arrow and label ‘M2’ marks
the 12.421-hour period of the diurnal tide and a grey line indicates the 2⇡/f0 = (2 sin �)�1-day inertial period
at latitude �. Small peaks are discernible at the mixed-harmonic period 2⇡/(f0 + M2) = 0.31 and 0.34 days in
data from 40.98�N and 27.99�N, respectively. WESTPAC data from OSU’s Deep Water Archive2 was provided
in convenient form by Harper Simmons.

1.1 Waves and flow

Outside surface and bottom boundary layers, oceanic motion is mostly a mixture of internal
waves and quasi-geostrophic flow. Waves and flow have similar horizontal space-scales of tens
to hundreds of kilometers, but widely disparate time-scales ranging from a few minutes for the
fastest waves to months or years for the most slowly-evolving flows. These pithy oceanic facts
are evidenced by six estimates of kinetic energy frequency spectra shown in figure 1.1. The
estimates are made from hourly, year-long observations of horizontal velocity in the western
Pacific made during the WESTPAC experiment between the summers of 1980 and 19812.

Notice first the two conspicuous peaks that appear in every record: one broad and shifting
with periods close to one day, and another narrow and fixed at a period of 12.421 hours.
The first peak is the fingerprint of ‘near-inertial waves’ close to the local inertial frequency
f
0

= 4⇡ sin�/day at latitude � forced by diverse mechanisms like winds and flow-bathymetry
interaction. The second peak corresponds to a mix of surface tides and internal waves or
‘internal tides’ forced with astronomical precision by the 12.421-hour lunar semidiurnal tide. A
third peak manifests at the solar and lunar diurnal periods close to one day in the record from
40.98�N which may correspond to the depth-indepedent surface tide or to the tidally-forced
evanescent internal waves explored by Musgrave et al. (2016). Observe the logarithmic scale:
the energy density at inertial and tidal peaks is 100⇥ greater than at surrounding frequencies.

2http://www.cmrecords.net/quick/pacific/wp/wp.htm
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Their inclination to break and churn the ocean with small-scale turbulence suggests that internal
waves make an important contribution to the vertical, diapycnal mixing that sets the ocean’s
density stratification and draws heat and carbon into the abyss.

The inertial and tidal peaks both correspond to relatively high-frequency internal waves.
Moving left from the inertial peak toward lower frequencies and longer periods, kinetic energy
density first decreases to a minimum and thereafter increases to what is typically a maximum
for each spectrum at the longest observed period. The sluggish, energy-containing motions
associated with this leftward maximum are quasi-geostrophic flows: planetary Rossby waves,
meandering currents, and slowly-spinning eddies. These flows are ‘quasi-geostrophic’ because
their leisurely evolution over many inertial periods implies they adhere to a linear geostrophic
balance between the inertial Coriolis force and pressure gradient force. Quasi-geostrophic eddies
and currents contain most of the ocean’s kinetic energy away from storm-whipped surface layers,
and rapidly stir oceanic heat and carbon over decadal time-scales on surfaces of constant density
connected to the atmosphere.

In consequence, predicting the Earth system’s short-term response to rapid changes in CO
2

concentration, for example, requires an approximate description of the quasi-geostrophic stirring
not explicitly resolved in coarse resolution models (Danabasoglu et al., 2012; Danabasoglu &
Marshall, 2007). And e↵orts for predicting climate evolution over long, hundred-year time-scales
requires knowledge of the changing magnitude and spatial distribution of wave-driven diapycnal
mixing to accurately describe abyssal absorption of carbon and slow changes in the ocean’s
density stratification so critical to ocean dynamics. Approximations of diapycnal mixing may
require distinct components to account separately for the mixing driven by internal tides (Melet
et al., 2013; Green & Nycander, 2013; Olbers & Eden, 2013) and near-inertial waves (Melet
et al., 2014; Jochum et al., 2013). A strong physical basis is necessary for such approximate
descriptions of waves and flow to withstand changing atmospheric and oceanic conditions over
the course of decades and centuries.

Spurred by the need to better understand internal waves and quasi-geostrophic flow and
sustained by a conviction that new mathematical models can yield substantial physical intuition,
this dissertation develops models that isolate the nonlinear interaction of oceanic internal waves
and quasi-geostrophic flow. We focus first on evolution of wave-averaged quasi-geostrophic flow
in arbitrary and prescribed field of hydrostatic internal waves chapter 2. Next, we develop two
models that couple quasi-geostrophic flow to near-inertial waves and their second harmonic in
chapter 3 and isolate the slow evolution of internal tides in quasi-geostrophic flow in chapter 4.

1.2 Mathematical overtures

The shape of typical frequency spectra speaks to a dichotomy among energy-containing oceanic
motions. The energy-density minimum or ‘spectral gap’ between the conspicuous high-frequency
internal wave peaks and leftward-increasing ramp of low-frequency quasi-geostrophic flow is
intrinsic to the ocean’s density-stratified and rotating physics: both waves and flow are funda-
mentally small-amplitude motions, or slight perturbations to the ocean’s basic state of rapid
rotation and strong density stratification.

The root of this oceanic dichotomy is exposed by a review of the small-amplitude, linear solu-
tions to this dissertation’s standard model for oceanic motion, the inviscid, rotating Boussinesq
equations on the �-plane. The linear solutions to the rotating Boussinesq equations form the
basis for the reduced models developed in 2, 3, and 4. The trek through linear landscapes ends
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with a glimpse into nonlinear wilds that primes needed mathematical machinery and evokes
essential physical ideas.

1.2.1 Dynamics of rotating Boussinesq fluids

The rotating Boussinseq equations are posed in a reference frame that rotates with the Earth at
frequency ⌦ = 2⇡/day and expanded around a static, background density stratification. Fluid
density is decomposed into

⇢(x, t) = ⇢
0

+ ⇢⇤(z) + ⇢0(x, t) , (1.1)

where t is time and x = (x, y, z) are Cartesian east, north, and vertical coordinates. In (1.1),
⇢
0

is an average or reference density, ⇢⇤(z) is the background density stratification, and ⇢0 is
the dynamic perturbation associated with fluid motion. We define the background buoyancy
profile B⇤ and ‘buoyancy’ b associated with the dynamic density perturbation ⇢0,

B⇤(z)
def

= �g⇢⇤(z)

⇢
0

and b
def

= �g⇢0

⇢
0

. (1.2)

The buoyancy b is an acceleration imposed on the fluid by deviations in density from the
background profile. We also decompose pressure into hydrostatic and dynamic components.
The fluid’s total pressure field is decomposed into

� ⇢
0

gz + ⇢
0

P⇤(z) + ⇢
0

p(x, t) , (1.3)

where P⇤z = �g⇢⇤/⇢0 so that �⇢
0

gz + ⇢
0

P⇤ is the hydrostatic part of pressure and ⇢
0

p is the
dynamic part of pressure associated with fluid motion.

Two important frequencies intrinsic to density stratification and rotation are the buoyancy
frequency, N , and inertial or Coriolis frequency, f . The buoyancy frequency is

N2

def

=
dB⇤

dz
= � g

⇢
0

d⇢⇤
dz

. (1.4)

N is the frequency of gravity- or buoyancy-driven oscillations induced by small vertical dis-
placements of fluid. The inertial frequency is

f
def

= 2⌦ sin� , (1.5)

⇡ f
0

+ �y , (1.6)

where � is latitude. In (1.6) we move into a Cartesian reference frame which is tangent to
the Earth’s surface at the reference latitude �

0

and make the ‘�-plane approximation’. On
the �-plane, f is expanded around �

0

so that the local inertial frequency is f
0

= 2⌦ sin�
0

and the latitudinal variation of f is modeled by �y = (2⌦ cos�
0

/R) y, where R is the radius
of the Earth. The local inertial frequency f

0

is the frequency of oscillations induced by small
horizontal displacements of fluid and restored by the displacement’s inertial advection of the
background rotating velocity field.

The equations used in this dissertation follow from four crucial assumptions: (i) the dynam-
ics are inviscid with negligible molecular di↵usion and dissipation; (ii) density depends linearly
on the concentration of one or more scalar quantities; (iii) the Boussinesq approximation is
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valid because density fluctuations are relatively small so that ⇢⇤ + ⇢0 ⌧ ⇢
0

; and (iv) we can
neglect the inertial term 2⌦ cos� (w x̂ � u ŷ) from the momentum balance because the aspect
ratio H/L of considered motions is small so that w ⌧ (u, v), where u = (u, v, w) is the fluid ve-
locity. Note that we hold o↵ on assuming hydrostatic balance p = bz in the vertical momentum
equation until chapter 1.2.3, despite that disregarding (2⌦ cos�) u while assuming H/L ⌧ 1
and u � w requires it. This minor slight-of-hand permits a fuller discussion of linear physics
than would be possible under the hydrostatic approximation. With this caveat, the preceding
definitions and assumptions lead to the rotating Boussinesq equations on the �-plane,

Dtu � fv + px = 0 , (1.7)

Dtv + fu+ py = 0 , (1.8)

Dtw + pz = b , (1.9)

Dtb+ wN2 = 0 , (1.10)

ux + vy + wz = 0 . (1.11)

where subscripts with respect to (x, y, z) or t denote partial derivatives, and Dt is the material
derivative following the fluid,

Dt
def

= @t + u ·r . (1.12)

In appendix A we show how (1.7) through (1.11) can be written in the di↵erent and useful
‘wave operator form’. The Ertel potential vorticity is

⇧
def

= !a ·rB , (1.13)
def

= (f ẑ + !) ·
�
N2

ẑ +rb
�
, (1.14)

= fN2 +N2! + fbz + ! ·rb , (1.15)

where !a is absolute vorticity, B = B⇤+b is the total buoyancy field, and !

def

= r⇥u is relative
vorticity with vertical component ! = ẑ · ! = vx � uy. A remarkable property of equations
(1.7) through (1.11) is the material conservation of ⇧, so that

Dt⇧ = 0 . (1.16)

The conservation of ⇧ expressed by (1.16) is a statement of angular momentum conservation
for an e↵ectively constant-density fluid that rotates locally with an e↵ective angular velocity
of !a/2 and whose extension along the axes of rotation is tracked by rB. In other words,
pulling fluid surfaces apart decreases rB and spins up the fluid by increasing !a. For the
small-amplitude motion of waves and flow, fN2 in (1.15) is by far the largest component of ⇧.

1.2.2 Lessons of linear dynamics

The formulation of (1.7) through (1.11) means the velocity u and buoyancy b are departures
from a stable basic state in solid body rotation around the z-axis with angular velocity f/2
and density profile ⇢

0

+ ⇢⇤. Waves and flow are both small perturbations to this basic state
with small u and b, which means they are well described by the linear terms in equations (1.7)
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through (1.11) obtained by assuming Dt ⇡ @t,

ut � f
0

v + px = 0 , (1.17)

vt + f
0

u+ py = 0 , (1.18)

wt � b+ pz = 0 , (1.19)

bt + wN2 = 0 , (1.20)

ux + vy + wz = 0 . (1.21)

Equations (1.17) through (1.21) are the linearized Boussinesq equations. Their unsteady solu-
tions are internal waves and their steady solutions are geostrophic flows.

A conservation law follows by forming @x(1.18)�@y(1.17) and using (1.21) and (1.20),

@t


vx � uy + @z

✓
f
0

b

N2

◆�
def

= N2Qt = 0 , (1.22)

where we recall that ! = ẑ · ! = vx � uy is the vertical component of vorticity. In equation
(1.22) we have defined Q, the linear ‘Available Potential Vorticity’, or APV. Linear APV
is synonymous with the standard expression for quasi-geostrophic potential vorticity. The
linearized APV does not evolve in (1.17) through (1.21): for internal waves Q = 0 and for
geostrophic flow Q = Q(x) is constant in time. The general definition of nonlinear APV in
chapter 2.2 is one of the main accomplishments of this dissertation. Notice that (1.22) is
not equal to the linear parts of Ertel PV in (1.14). Thus internal waves generate non-trivial
signatures in ⇧ even while Q = 0. This point is central to the utility of APV.

Waves

When f = f
0

is constant, a short series of manipulations on (1.17) through (1.21) discussed in
detail in appendix A leads to a single equation for w,

h
@2t

�4 + @2z
�
+ f 2

0

@2z +N24
i
w = 0 , (1.23)

where we define the horizontal Laplacian 4 def

= @2x + @2y . Equation (1.23) is the internal wave
equation. When f and N are constant and the considered domain is either infinite or a periodic
box, we can decompose w into the sinuosoids w = exp (ik·x � i�t) ŵ(k, �), where � is frequency
and k = (k, `,m) is wavenumber. Then (1.23) implies that k and � satisfy the dispersion
relation,

�2 =
f 2

0

m2 +N2 (k2 + `2)

k2 + `2 +m2

. (1.24)

Equation (1.24) shows that the frequency of linear, freely-propagating internal waves always
lies between f

0

and N , whether f
0

< N or N < f
0

. When N is not constant but varies slowly
compared to 1/m, equation (1.24) becomes a local approximation. A stationary phase analysis
developed by Lighthill (2001) in chapters 3.7 and 3.8 of his book shows that energy in the
linear, Fourier-decomposed wave field travels at the ‘group velocity’ U = rk� corresponding
to the vector x/t at which the phase function ✓ = k · x/t � � is stationary. This indicates the
group velocity of waves near frequency f

0

or N is small where � changes slowly with k.
The dispersion relation in (1.24) implies that waves with frequency close to f

0

have (Nk/f
0

m)2 ⌧
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1 and thus large horizontal scales and small vertical scales under typical oceanic conditions
where f

0

⌧ N . These nearly-horizontally-uniform ‘near-inertial’ motions have small horizontal
pressure gradients, so that (1.17) and (1.18) combine into

Ut + if
0

U ⇡ 0 , where U def

= u+ iv . (1.25)

The solution to (1.25) is U ⇡ e�if0tA(x, t), where A is a near-arbitrary function of space that
evolves slowly in the linear equations to reflect slight departures of U from the inertial frequency.
When A = A(x) is stationary this type of motion is often called an ‘inertial oscillation’, though
a better name is ‘pure inertial wave’. At the other end of the spectrum are motions with
small horizontal scales and large vertical scales. These near-buoyancy waves have small vertical
pressure gradients so that (1.19) and (1.20) merge into

Wt + iNW ⇡ 0 , where W def

= w + ib/N . (1.26)

The solution to (1.26) is W ⇡ e�iNtA(x, t), where again A is an near-arbitrary function of space
and slowly evolves in time. In the real and heterogeneous ocean, pure inertial or buoyancy waves
cannot exist. Motions are always near -inertial or near -buoyancy.

The fact that U and W have arbitrary spatial structure in (1.25) and (1.26) reflects the
important fact that dispersion only weakly constrains the spatial structure of malleable near-
inertial and near-buoyancy waves. The weak dispersion and correspondingly slow propagation
of near-inertial and near-buoyancy waves means that oceanic heterogeneities not accounted for
in the linear equations, like quasi-geostrophic flow, small-scale turbulence, or surface waves, are
important in determining their spatial structure and ultimate evolution.

Flow

The preceding discussion ignores a special and important non-trivial solution to (1.23): w = 0.
This solution corresponds to steady solutions to the linear Boussinesq equations, in which case
(1.17) through (1.19) reduce to

f
0

v = px , (1.27)

�f
0

u = py , (1.28)

b = pz . (1.29)

Equations (1.27) and (1.28) are the conditions of geostrophic balance and (1.29) is the condition
of hydrostatic balance. Geostrophic flow obeys ux + vy = 0 and can be described by the
geostrophic streamfunction

 
def

= p/f
0

, so that (u, v, b) = (� y, x, f0 z) . (1.30)

Unlike internal waves, geostrophic flow does not evolve in the linear Boussinesq equations with
f = f

0

. Its evolution must appeal either to nonlinearity or e↵ects of the Earth’s curvature
through �.

Limits of linearity. In the nonlinear equations in (1.7) through (1.11), both waves and
flow acquire slow but non-infinite time-scales associated with slight departures from the linear
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balances in (1.17) through (1.21). If we denote the fast wave time-scale t̃ and the flow time-scale
t̄, the nearly-linear solutions to (1.7) through (1.11) become

Q = Q(x, t̄) , and w(x, t̃, t̄) =
X

n

e�i�n˜tAn(x, t̄) . (1.31)

The methods of this dissertation are, crudely put, to (i) derive an equation for the slow evolution
of Q which isolates the ‘average’ e↵ects of waves over the long time-scales of t̄, and (ii) restrict
attention to one or two frequencies �n and derive slow evolution equations for An that couple
to the slow evolution of Q. We next discuss how to isolate the slow evolution of Q from (1.7)
through (1.11) in the classic case of quasi-geostrophic flow.

1.2.3 Interaction and non-interaction of waves and flow

One of the main accomplishments of this dissertation is the definition of a new material invariant
named ‘Available Potential Vorticity’, or APV. A comprehensive introduction to APV is given
in chapter 2.2. One definition of APV is

Q(x, t)
def

= ⇧(x, t) � ⇧⇤(x � ⌅) , (1.32)

where ⇧ is Ertel PV defined in (1.15), ⇧⇤
def

= fN2 is its static ‘background’ part, and ⌅(x, t)
is exact nonlinear particle displacement defined through Dt⌅ = u. Because Dt⇧ = 0 and
Dt (x � ⌅) = 0, APV is materially conserved, so that

DtQ = 0 . (1.33)

APV isolates the part of potential vorticity with a meaningful, intrinsic evolution. When f = f
0

is constant, Q expands for !/f
0

⇠ bz/N2 ⌧ 1 into

Q = N2


! + @z

✓
f
0

b

N2

◆�
+ ! ·rb � f

0

⇤zz

N2

1

2

b2 + · · · , (1.34)

where ⇤
def

= lnN2.
The APV equation opens a relatively straightforward path to the result that the evolution

of quasi-geostrophic flow is independent from waves of equal ‘magnitude’ to leading-order in
Rossby number. This result was shown by Bartello (1995) and Majda & Embid (1998) for
the rotating Boussinesq equations and by Warn (1986) and Dewar & Killworth (1995) for the
shallow water equations. We define two non-dimensional parameters,

✏
def

=
U

f
0

L
, and Bu

def

=

✓
N

0

H

f
0

L

◆
2

, (1.35)

where N
0

, U , H, and L are characteristic scales for N , velocity, height, and horizontal extent
of the motion. The parameter ✏, which is both the Rossby number as well as a measure of wave
amplitude, is assumed small. Note that this definition of ✏ di↵ers from that in section 2.3.1,
where ✏ is a measure of wave amplitude only and the Rossby number is ✏2. The parameter
Bu is the Burger number, which measures the magnitude of the horizontal pressure gradient
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relative to inertia. The ratio f
0

/N
0

is almost always small in the Earth’s ocean except for
isolated, abyssal places. The standard quasi-geostrophic assumption is that H/L ⇠ f

0

/N
0

⌧ 1
such that Bu = O(1). This assumption reduces the vertical momentum equation (1.9) to the
statement of hydrostatic balance, pz = b.

The bread-and-butter asymptotic method of this dissertation is the multiple-scale ‘two-time’
expansion, which assumes the existence of two time-scales: a fast wave time-scale t̃ ⇠ f�1

0

, and
a slow flow-evolution time-scale t̄ ⇠ (✏f

0

)�1. Time-derivatives are accordingly split into

@t 7! @
˜t + ✏ @

¯t , (1.36)

The non-dimensional APV equation becomes

Q
˜t + ✏ (u ·rQ+Q

¯t) = 0 . (1.37)

All quantities are expanded in ✏, so that APV has the expansion

Q = N2

⇥
!
0

+ @z
�

b0
N2

�⇤

| {z }
def
=Q0

+ ✏
⇣

!

0

·rb
0

+N2

⇥
!
1

+ @z
�

b1
N2

�⇤

| {z }
def
=Q1

⌘
+ · · · (1.38)

Notice that Q
0

is just the linear APV from (1.22).
The leading-order velocity u

0

obeys the linear equations (1.17) through (1.21) with hy-
drostatic balance p

0z = b
0

replacing (1.19). By averaging over the fast time-scale, u

0

can be
decomposed into waves, ũ

0

, and flow ū

0

,

u

0

= ū

0

+ ũ

0

. (1.39)

The average is defined so that ¯̃a = 0 and (a
˜t) = 0, when a(x, t̃, t̄) is any variable decomposed

into fast and flow components. ũ

0

is a rapidly oscillating wave field governed approximately by
(1.23) and ū

0

is slowly-evolving quasi-geostrophic flow. ū

0

obeys geostrophic and hydrostatic
balance and can thus be expressed by a geostrophic streamfunction,

 
def

= p̄
0

, so that
�
ū
0

, v̄
0

, b̄
0

�
= (� y, x, z) . (1.40)

The non-interaction result follows in two-steps. At leading-order, the APV equation amounts
to a restatement of (1.22),

N�2Q
0

˜t = @
˜t


!
0

+ @z

✓
b
0

N2

◆�
= 0 . (1.41)

The integral of (1.41) implies that Q
0

= Q̄
0

(x, ⌧) does not depend on the fast time. The O(✏)
terms in the APV equation (1.37) are

Q
0

¯t +Q
1

˜t + u

0

·rQ
0

= 0 . (1.42)

Because Q
0

does not depend on the fast time t̃, the time-average of (1.42) is

Q
0

¯t + ū

0

·rQ
0

= 0 . (1.43)
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Equation (1.43) is the ordinary quasi-geostrophic equation. If we restore dimensionality, and
define the ‘quasi-geostrophic potential vorticity’ as q = Q

0

/N2, (1.43) rearranges into the
‘standard’ quasi-geostrophic equation with � = 0,

q
¯t + J ( , q) = 0 , with q

def

=

✓
@2x + @2y + @z

f 2

0

N2

@z

◆
 . (1.44)

The operator J(a, b) = axby �aybx is the Jacobian so that @t+J( , ·) = @t+ ū

0

·r is the wave-
averaged and leading-order material derivative. To time-scales at least as long as (✏f

0

)�1, the
evolution of q is independent from ũ

0

and thus internal waves. On longer time-scales, however,
the independence of q and ũ

0

is not secure.

1.3 The shape of things to come

This dissertation develops models in which waves and flow coevolve and interact with two-way
coupling. For this purpose we revise the assumption in chapter 1.2.3 that both waves and
flow are leading-order solutions to (1.7) through (1.11). Instead, we assume that waves are
‘strong’, and flow is ‘weak’, so that u

0

= ũ

0

and the leading-order solution of (1.7) through
(1.11) is a rapidly oscillating wave field. In this case, the quasi-geostrophic flow is part of the
first-order velocity u

1

, the leading contribution to APV is Q
1

, the small parameter ✏ measures
wave steepness, and the Rossby number is Ro = ✏2.

The work of chapter 2 is then to find a slow evolution equation for q = Q
1

/N2. This equation
resembles the classical quasi-geostrophic equation in (1.44) but for two crucial di↵erences: first,
geostrophic balance is modified and obeyed only by the Lagrangian-mean flow, rather than
the Eulerian-mean. The modified balance conditions are given in (2.50) and di↵er from the
traditional balance conditions in (1.28) and (1.27). Second, waves contribute to the APV
balance that defines q in (1.44). In consequence the APV equation in (2.1) and (2.2) becomes,
with � = 0,

q
¯t + J ( , q) = 0 , with q

def

=

✓
@2x + @2y + @z

f 2

0

N2

@z

◆
 + qw . (1.45)

Compare (1.45) to (1.44). The new ‘wave contribution to APV’, qw in (1.45), is defined in (2.3)
and modifies the evolution of quasi-geostrophic flow. The surprisingly mundane and kinematic
origins of qw are discussed in chapter 2.4.

The contribution of qw to q in (1.45) does not imply that ‘waves have APV’. The APV in
q is still a material invariant advected on the time-averaged particle trajectories described by
 and decidedly a quantity wholly separate from waves. Instead, the inclusion of qw in the
APV balance implies that waves are associated with their own, wave-induced balanced flow
that partakes in flow evolution by advecting q. We make this explicit by exploiting the fact
that q is linear in  , which permits the decomposition

 =  q +  w , (1.46)
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where  q and  w are defined through

q =

✓
@2x + @2y + @z

f 2

0

N2

@z

◆
 q , and � qw =

✓
@2x + @2y + @z

f 2

0

N2

@z

◆
 w . (1.47)

The balanced flow thus has two parts: an ordinary, APV-associated part in  q, and a wave-
induced part in  w. The e↵ect of waves on flow evolution is expressed entirely in the advection
of q by  w.

The wave-induced balanced flow  w is a nonlinear correction that refines linear hydrostatic
wave solutions to better satisfy the nonlinear equations in (1.7) through (1.11). Because infinite
plane progressive waves are exact solutions to the nonlinear equations (1.7) through (1.11)
when N and f are constant, such waves have qw = 0 and no wave-induced balanced flow. Even
vertically-standing but horizontally infinite waves have no wave-induced flow because qw and
 w are horizontally uniform. In that case  w corresponds to steady z-dependent corrections
to the pressure and buoyancy fields. Deeper intuitions on wave-induced balanced flows are
developed in chapter 2.5.

Infinite plane waves are mathematical figments that do not exist in the Earth’s ocean where
wave forcing is time-varying and spatially-modulated, f and N are not constant, and hetero-
geneities like quasi-geostrophic flow advect, refract, and otherwise distort wave fields aspiring
to linearity. Such distortion enhances wave field nonlinearity, leading to stronger  w and wave
‘feedback’ on flow evolution and exposing the incompleteness of equation (1.45): the wave prop-
erty qw is not known in general and worse, depends on  q and q. To close the APV equation
in (1.45) we need an equation that describes the slow evolution of the wave field and  w in
quasi-geostrophic flow describe by the distribution of q. This is the goal of chapters 3 and 4,
which separately focus on coupling (1.45) to one of the two conspicuous peaks in figure 1.1: the
near-inertial peak in chapter 3, and the tidal peak in chapter 4.

The derivation of the near-inertial equation in chapter 3.3 is particularly tractable due
to the weak dispersion of near-inertial waves. Motivated by observations and simulations of
the Boussinesq equations that persistently observe near-inertial second harmonic waves with
frequency 2f

0

when near-inertial waves interact with quasi-geostrophic flow (D’Asaro et al.,
1995; Niwa & Hibiya, 1999; Danioux et al., 2008), the model is extended to include the nonlinear
production and slow evolution of waves frequency 2f

0

. The result is a closed three-component
model that describes the simultaneous evolution of APV, the amplitude of the near-inertial
waves, and the amplitude of the near-inertial second harmonic. Peculiarly, the two distinct
adiabatic invariants of the model identified in chapter 3.6 imply that near-inertial waves can
extract energy from quasi-geostrophic flows under ordinary oceanic conditions. Chapter 3.7
compares numerical solutions to the three-component model with the Boussinesq equations
and chapter 3.8 discusses the physics these solutions imply.

The interaction between internal tides and quasi-geostrophic flow is tackled in chapter 4.
Distilling the slow evolution of internal tides is more di�cult than the near-inertial case and
equivalent to finding a slow evolution equation for general-frequency hydrostatic internal waves
in quasi-geostrophic flow. Key to deriving the internal tide model is the method of reconstitution
(Roberts, 1985), which in a sense generalizes the derivation of the 2f

0

equation in chapter 3.
Two solutions to the hydrostatic wave model for barotropic flow are discussed in chapter 4.5.
Further work remains to couple the slow hydrostatic wave evolution to the modified quasi-
geostrophic system in (2.1) through (2.3).


