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EPIGRAPH

Do not be tricked by human-centered views.

Gary Synder quoting Dogen, Pearly Everlasting

I had two dreams about him after he died. I don’t remember the first one all that well but
it was about meetin’ him in town somewheres and he give me some money and I think I lost it.
But the second one it was like we was both back in older times and I was on horseback goin’
through the mountains of a night. Goin’ through this pass in the mountains. It was cold and
there was snow on the ground and he rode past me and kept on goin’. Never said nothin’. He
just rode on past and he had this blanket wrapped around him and he had his head down and
and when he rode past I seen he was carryin’ fire in a horn the way people used to do and I
could see the horn from the light inside of it. About the color of the moon. And in the dream
I knew that he was goin’ on ahead and that he was fixin’ to make a fire somewhere out there
in all that dark and all that cold and I knew that whenever I got there he would be there. And
then I woke up.

Cormac McCarthy, No Country for Old Men
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ABSTRACT OF THE DISSERTATION

On the coupled evolution of oceanic internal waves
and quasi-geostrophic flow

by

Gregory LeClaire Wagner

Doctor of Philosophy

University of California, San Diego, 2016

Professor William R. Young, Chair

Oceanic motion outside thin boundary layers is primarily a mixture of quasi-geostrophic
flow and internal waves with either near-inertial frequencies or the frequency of the semidiurnal
lunar tide. This dissertation seeks a deeper understanding of waves and flow through reduced
models that isolate their nonlinear and coupled evolution from the Boussinesq equations. Three
physical-space models are developed: an equation that describes quasi-geostrophic evolution
in an arbitrary and prescribed field of hydrostatic internal waves; a three-component model
that couples quasi-geostrophic flow to both near-inertial waves and the near-inertial second
harmonic; and a model for the slow evolution of hydrostatic internal tides in quasi-geostrophic
flow of near-arbitrary scale. This slow internal tide equation opens the path to a coupled model
for the energetic interaction of quasi-geostrophic flow and oceanic internal tides.

Four results emerge. First, the wave-averaged quasi-geostrophic equation reveals that finite-
amplitude waves give rise to a mean flow that advects quasi-geostrophic potential vorticity.
Second is the definition of a new material invariant: Available Potential Vorticity, or APV.
APV isolates the part of Ertel potential vorticity available for balanced-flow evolution in Eule-
rian frames and proves necessary in the separating waves and quasi-geostrophic flow. The third
result, hashed out for near-inertial waves and quasi-geostrophic flow, is that wave-flow inter-
action leads to energy exchange even under conditions of weak nonlinearity. For storm-forced
oceanic near-inertial waves the interaction often energizes waves at the expense of flow. We call
this extraction of balanced quasi-geostrophic energy ‘stimulated generation’ since it requires
externally-forced rather than spontaneously-generated waves. The fourth result is that quasi-
geostrophic flow can encourage or ‘catalyze’ a nonlinear interaction between a near-inertial wave
field and its second harmonic that transfers energy to the small near-inertial vertical scales of
wave breaking and mixing.

xiv



Chapter 1

Introduction

How inappropriate to call this planet Earth when it is quite clearly Ocean.

—Arthur C. Clarke

From a certain perspective in space, the Earth seems ocean entire.1 Ocean covers 70.9% of
the Earth’s surface despite billions of years of continental accumulation. In epochs past, there
was only ocean (Ward & Brownlee, 2000).

The ocean’s part in climate and life on Earth surpasses its size. More than 90% of the
heat energy added to the Earth system between 1955 and 2010 is stored in the ocean. This
massive amount of energy corresponds to 36�C of atmospheric warming (Levitus et al., 2012).
Whatever the concerns of mankind, the increase in land surface temperature known as ‘global
warming’ is a minor correction to the changes recorded in our warming ocean.

The many oceanic roles in climate emerge from its kaleidoscopic patchwork of motion:
the froth of white-capping sea and swell, storm-like eddies spinning o↵ the Gulf Stream, and
lumbering internal waves tens to hundreds of meters tall. The ocean’s rotating and density-
stratified dynamics entangle each piece spanning from the planetary to the planktonic, placing
detailed predictions of ocean dynamics far beyond reach of current technology. A necessary step
toward forecasting climate change is thus the development of new models for ocean physics that
are e�cient and approximate yet still physically-based and reliable.

This dissertation contributes to that e↵ort by seeking a deeper understanding of part of
the patchwork: the interweaving of two oceanic motions called ‘internal waves’ and ‘quasi-
geostrophic flow’ with spatial scales of tens to hundreds of kilometers. The methods of this
dissertation are theoretical, consisting mainly of the development of models that isolate the
physics of waves and flow and augmented by a small number of analytical and numerical
examples. It is hoped that further analysis of the models developed in this dissertation will
prove useful in interpreting both observations and numerical simulations and in developing
ever-better models for oceanic circulation and the evolution of Earth’s climate.

1http://eoimages.gsfc.nasa.gov/images/imagerecords/46000/46209/earth pacific lrg.jpg

1

http://eoimages.gsfc.nasa.gov/images/imagerecords/46000/46209/earth_pacific_lrg.jpg
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Figure 1.1: Estimates of kinetic energy frequency spectra in three one-year mooring records from the western
Pacific locations shown on the map at left. At right are kinetic energy spectra from upper-ocean and abyssal
instruments on each mooring. Spectral estimates are the ensemble average of spectra from 35 overlapping and
Hamming-windowed 20-day segments extracted from each year-long record. The arrow and label ‘M2’ marks
the 12.421-hour period of the diurnal tide and a grey line indicates the 2⇡/f0 = (2 sin�)�1-day inertial period
at latitude �. Small peaks are discernible at the mixed-harmonic period 2⇡/(f0 + M2) = 0.31 and 0.34 days in
data from 40.98�N and 27.99�N, respectively. WESTPAC data from OSU’s Deep Water Archive2 was provided
in convenient form by Harper Simmons.

1.1 Waves and flow

Outside surface and bottom boundary layers, oceanic motion is mostly a mixture of internal
waves and quasi-geostrophic flow. Waves and flow have similar horizontal space-scales of tens
to hundreds of kilometers, but widely disparate time-scales ranging from a few minutes for the
fastest waves to months or years for the most slowly-evolving flows. These pithy oceanic facts
are evidenced by six estimates of kinetic energy frequency spectra shown in figure 1.1. The
estimates are made from hourly, year-long observations of horizontal velocity in the western
Pacific made during the WESTPAC experiment between the summers of 1980 and 19812.

Notice first the two conspicuous peaks that appear in every record: one broad and shifting
with periods close to one day, and another narrow and fixed at a period of 12.421 hours.
The first peak is the fingerprint of ‘near-inertial waves’ close to the local inertial frequency
f
0

= 4⇡ sin�/day at latitude � forced by diverse mechanisms like winds and flow-bathymetry
interaction. The second peak corresponds to a mix of surface tides and internal waves or
‘internal tides’ forced with astronomical precision by the 12.421-hour lunar semidiurnal tide. A
third peak manifests at the solar and lunar diurnal periods close to one day in the record from
40.98�N which may correspond to the depth-indepedent surface tide or to the tidally-forced
evanescent internal waves explored by Musgrave et al. (2016). Observe the logarithmic scale:
the energy density at inertial and tidal peaks is 100⇥ greater than at surrounding frequencies.

2http://www.cmrecords.net/quick/pacific/wp/wp.htm
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Their inclination to break and churn the ocean with small-scale turbulence suggests that internal
waves make an important contribution to the vertical, diapycnal mixing that sets the ocean’s
density stratification and draws heat and carbon into the abyss.

The inertial and tidal peaks both correspond to relatively high-frequency internal waves.
Moving left from the inertial peak toward lower frequencies and longer periods, kinetic energy
density first decreases to a minimum and thereafter increases to what is typically a maximum
for each spectrum at the longest observed period. The sluggish, energy-containing motions
associated with this leftward maximum are quasi-geostrophic flows: planetary Rossby waves,
meandering currents, and slowly-spinning eddies. These flows are ‘quasi-geostrophic’ because
their leisurely evolution over many inertial periods implies they adhere to a linear geostrophic
balance between the inertial Coriolis force and pressure gradient force. Quasi-geostrophic eddies
and currents contain most of the ocean’s kinetic energy away from storm-whipped surface layers,
and rapidly stir oceanic heat and carbon over decadal time-scales on surfaces of constant density
connected to the atmosphere.

In consequence, predicting the Earth system’s short-term response to rapid changes in CO
2

concentration, for example, requires an approximate description of the quasi-geostrophic stirring
not explicitly resolved in coarse resolution models (Danabasoglu et al., 2012; Danabasoglu &
Marshall, 2007). And e↵orts for predicting climate evolution over long, hundred-year time-scales
requires knowledge of the changing magnitude and spatial distribution of wave-driven diapycnal
mixing to accurately describe abyssal absorption of carbon and slow changes in the ocean’s
density stratification so critical to ocean dynamics. Approximations of diapycnal mixing may
require distinct components to account separately for the mixing driven by internal tides (Melet
et al., 2013; Green & Nycander, 2013; Olbers & Eden, 2013) and near-inertial waves (Melet
et al., 2014; Jochum et al., 2013). A strong physical basis is necessary for such approximate
descriptions of waves and flow to withstand changing atmospheric and oceanic conditions over
the course of decades and centuries.

Spurred by the need to better understand internal waves and quasi-geostrophic flow and
sustained by a conviction that new mathematical models can yield substantial physical intuition,
this dissertation develops models that isolate the nonlinear interaction of oceanic internal waves
and quasi-geostrophic flow. We focus first on evolution of wave-averaged quasi-geostrophic flow
in arbitrary and prescribed field of hydrostatic internal waves chapter 2. Next, we develop two
models that couple quasi-geostrophic flow to near-inertial waves and their second harmonic in
chapter 3 and isolate the slow evolution of internal tides in quasi-geostrophic flow in chapter 4.

1.2 Mathematical overtures

The shape of typical frequency spectra speaks to a dichotomy among energy-containing oceanic
motions. The energy-density minimum or ‘spectral gap’ between the conspicuous high-frequency
internal wave peaks and leftward-increasing ramp of low-frequency quasi-geostrophic flow is
intrinsic to the ocean’s density-stratified and rotating physics: both waves and flow are funda-
mentally small-amplitude motions, or slight perturbations to the ocean’s basic state of rapid
rotation and strong density stratification.

The root of this oceanic dichotomy is exposed by a review of the small-amplitude, linear solu-
tions to this dissertation’s standard model for oceanic motion, the inviscid, rotating Boussinesq
equations on the �-plane. The linear solutions to the rotating Boussinesq equations form the
basis for the reduced models developed in 2, 3, and 4. The trek through linear landscapes ends



4 Waves and flow

with a glimpse into nonlinear wilds that primes needed mathematical machinery and evokes
essential physical ideas.

1.2.1 Dynamics of rotating Boussinesq fluids

The rotating Boussinseq equations are posed in a reference frame that rotates with the Earth at
frequency ⌦ = 2⇡/day and expanded around a static, background density stratification. Fluid
density is decomposed into

⇢(x, t) = ⇢
0

+ ⇢⇤(z) + ⇢0(x, t) , (1.1)

where t is time and x = (x, y, z) are Cartesian east, north, and vertical coordinates. In (1.1),
⇢
0

is an average or reference density, ⇢⇤(z) is the background density stratification, and ⇢0 is
the dynamic perturbation associated with fluid motion. We define the background buoyancy
profile B⇤ and ‘buoyancy’ b associated with the dynamic density perturbation ⇢0,

B⇤(z)
def

= �g⇢⇤(z)

⇢
0

and b
def

= �g⇢0

⇢
0

. (1.2)

The buoyancy b is an acceleration imposed on the fluid by deviations in density from the
background profile. We also decompose pressure into hydrostatic and dynamic components.
The fluid’s total pressure field is decomposed into

� ⇢
0

gz + ⇢
0

P⇤(z) + ⇢
0

p(x, t) , (1.3)

where P⇤z = �g⇢⇤/⇢0 so that �⇢
0

gz + ⇢
0

P⇤ is the hydrostatic part of pressure and ⇢
0

p is the
dynamic part of pressure associated with fluid motion.

Two important frequencies intrinsic to density stratification and rotation are the buoyancy
frequency, N , and inertial or Coriolis frequency, f . The buoyancy frequency is

N2

def

=
dB⇤

dz
= � g

⇢
0

d⇢⇤
dz

. (1.4)

N is the frequency of gravity- or buoyancy-driven oscillations induced by small vertical dis-
placements of fluid. The inertial frequency is

f
def

= 2⌦ sin� , (1.5)

⇡ f
0

+ �y , (1.6)

where � is latitude. In (1.6) we move into a Cartesian reference frame which is tangent to
the Earth’s surface at the reference latitude �

0

and make the ‘�-plane approximation’. On
the �-plane, f is expanded around �

0

so that the local inertial frequency is f
0

= 2⌦ sin�
0

and the latitudinal variation of f is modeled by �y = (2⌦ cos�
0

/R) y, where R is the radius
of the Earth. The local inertial frequency f

0

is the frequency of oscillations induced by small
horizontal displacements of fluid and restored by the displacement’s inertial advection of the
background rotating velocity field.

The equations used in this dissertation follow from four crucial assumptions: (i) the dynam-
ics are inviscid with negligible molecular di↵usion and dissipation; (ii) density depends linearly
on the concentration of one or more scalar quantities; (iii) the Boussinesq approximation is
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valid because density fluctuations are relatively small so that ⇢⇤ + ⇢0 ⌧ ⇢
0

; and (iv) we can
neglect the inertial term 2⌦ cos� (w x̂ � u ŷ) from the momentum balance because the aspect
ratio H/L of considered motions is small so that w ⌧ (u, v), where u = (u, v, w) is the fluid ve-
locity. Note that we hold o↵ on assuming hydrostatic balance p = bz in the vertical momentum
equation until chapter 1.2.3, despite that disregarding (2⌦ cos�) u while assuming H/L ⌧ 1
and u � w requires it. This minor slight-of-hand permits a fuller discussion of linear physics
than would be possible under the hydrostatic approximation. With this caveat, the preceding
definitions and assumptions lead to the rotating Boussinesq equations on the �-plane,

Dtu � fv + px = 0 , (1.7)

Dtv + fu+ py = 0 , (1.8)

Dtw + pz = b , (1.9)

Dtb+ wN2 = 0 , (1.10)

ux + vy + wz = 0 . (1.11)

where subscripts with respect to (x, y, z) or t denote partial derivatives, and Dt is the material
derivative following the fluid,

Dt
def

= @t + u ·r . (1.12)

In appendix A we show how (1.7) through (1.11) can be written in the di↵erent and useful
‘wave operator form’. The Ertel potential vorticity is

⇧
def

= !a ·rB , (1.13)
def

= (f ẑ + !) ·
�
N2

ẑ +rb
�
, (1.14)

= fN2 +N2! + fbz + ! ·rb , (1.15)

where !a is absolute vorticity, B = B⇤+b is the total buoyancy field, and !

def

= r⇥u is relative
vorticity with vertical component ! = ẑ · ! = vx � uy. A remarkable property of equations
(1.7) through (1.11) is the material conservation of ⇧, so that

Dt⇧ = 0 . (1.16)

The conservation of ⇧ expressed by (1.16) is a statement of angular momentum conservation
for an e↵ectively constant-density fluid that rotates locally with an e↵ective angular velocity
of !a/2 and whose extension along the axes of rotation is tracked by rB. In other words,
pulling fluid surfaces apart decreases rB and spins up the fluid by increasing !a. For the
small-amplitude motion of waves and flow, fN2 in (1.15) is by far the largest component of ⇧.

1.2.2 Lessons of linear dynamics

The formulation of (1.7) through (1.11) means the velocity u and buoyancy b are departures
from a stable basic state in solid body rotation around the z-axis with angular velocity f/2
and density profile ⇢

0

+ ⇢⇤. Waves and flow are both small perturbations to this basic state
with small u and b, which means they are well described by the linear terms in equations (1.7)
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through (1.11) obtained by assuming Dt ⇡ @t,

ut � f
0

v + px = 0 , (1.17)

vt + f
0

u+ py = 0 , (1.18)

wt � b+ pz = 0 , (1.19)

bt + wN2 = 0 , (1.20)

ux + vy + wz = 0 . (1.21)

Equations (1.17) through (1.21) are the linearized Boussinesq equations. Their unsteady solu-
tions are internal waves and their steady solutions are geostrophic flows.

A conservation law follows by forming @x(1.18)�@y(1.17) and using (1.21) and (1.20),

@t


vx � uy + @z

✓
f
0

b

N2

◆�
def

= N2Qt = 0 , (1.22)

where we recall that ! = ẑ · ! = vx � uy is the vertical component of vorticity. In equation
(1.22) we have defined Q, the linear ‘Available Potential Vorticity’, or APV. Linear APV
is synonymous with the standard expression for quasi-geostrophic potential vorticity. The
linearized APV does not evolve in (1.17) through (1.21): for internal waves Q = 0 and for
geostrophic flow Q = Q(x) is constant in time. The general definition of nonlinear APV in
chapter 2.2 is one of the main accomplishments of this dissertation. Notice that (1.22) is
not equal to the linear parts of Ertel PV in (1.14). Thus internal waves generate non-trivial
signatures in ⇧ even while Q = 0. This point is central to the utility of APV.

Waves

When f = f
0

is constant, a short series of manipulations on (1.17) through (1.21) discussed in
detail in appendix A leads to a single equation for w,

h
@2t
�4 + @2z

�
+ f 2

0

@2z +N24
i
w = 0 , (1.23)

where we define the horizontal Laplacian 4 def

= @2x + @2y . Equation (1.23) is the internal wave
equation. When f and N are constant and the considered domain is either infinite or a periodic
box, we can decompose w into the sinuosoids w = exp (ik·x � i�t) ŵ(k, �), where � is frequency
and k = (k, `,m) is wavenumber. Then (1.23) implies that k and � satisfy the dispersion
relation,

�2 =
f 2

0

m2 +N2 (k2 + `2)

k2 + `2 +m2

. (1.24)

Equation (1.24) shows that the frequency of linear, freely-propagating internal waves always
lies between f

0

and N , whether f
0

< N or N < f
0

. When N is not constant but varies slowly
compared to 1/m, equation (1.24) becomes a local approximation. A stationary phase analysis
developed by Lighthill (2001) in chapters 3.7 and 3.8 of his book shows that energy in the
linear, Fourier-decomposed wave field travels at the ‘group velocity’ U = rk� corresponding
to the vector x/t at which the phase function ✓ = k · x/t � � is stationary. This indicates the
group velocity of waves near frequency f

0

or N is small where � changes slowly with k.
The dispersion relation in (1.24) implies that waves with frequency close to f

0

have (Nk/f
0

m)2 ⌧



Gregory LeClaire Wagner 7

1 and thus large horizontal scales and small vertical scales under typical oceanic conditions
where f

0

⌧ N . These nearly-horizontally-uniform ‘near-inertial’ motions have small horizontal
pressure gradients, so that (1.17) and (1.18) combine into

Ut + if
0

U ⇡ 0 , where U def

= u+ iv . (1.25)

The solution to (1.25) is U ⇡ e�if0tA(x, t), where A is a near-arbitrary function of space that
evolves slowly in the linear equations to reflect slight departures of U from the inertial frequency.
When A = A(x) is stationary this type of motion is often called an ‘inertial oscillation’, though
a better name is ‘pure inertial wave’. At the other end of the spectrum are motions with
small horizontal scales and large vertical scales. These near-buoyancy waves have small vertical
pressure gradients so that (1.19) and (1.20) merge into

Wt + iNW ⇡ 0 , where W def

= w + ib/N . (1.26)

The solution to (1.26) is W ⇡ e�iNtA(x, t), where again A is an near-arbitrary function of space
and slowly evolves in time. In the real and heterogeneous ocean, pure inertial or buoyancy waves
cannot exist. Motions are always near -inertial or near -buoyancy.

The fact that U and W have arbitrary spatial structure in (1.25) and (1.26) reflects the
important fact that dispersion only weakly constrains the spatial structure of malleable near-
inertial and near-buoyancy waves. The weak dispersion and correspondingly slow propagation
of near-inertial and near-buoyancy waves means that oceanic heterogeneities not accounted for
in the linear equations, like quasi-geostrophic flow, small-scale turbulence, or surface waves, are
important in determining their spatial structure and ultimate evolution.

Flow

The preceding discussion ignores a special and important non-trivial solution to (1.23): w = 0.
This solution corresponds to steady solutions to the linear Boussinesq equations, in which case
(1.17) through (1.19) reduce to

f
0

v = px , (1.27)

�f
0

u = py , (1.28)

b = pz . (1.29)

Equations (1.27) and (1.28) are the conditions of geostrophic balance and (1.29) is the condition
of hydrostatic balance. Geostrophic flow obeys ux + vy = 0 and can be described by the
geostrophic streamfunction

 
def

= p/f
0

, so that (u, v, b) = (� y, x, f0 z) . (1.30)

Unlike internal waves, geostrophic flow does not evolve in the linear Boussinesq equations with
f = f

0

. Its evolution must appeal either to nonlinearity or e↵ects of the Earth’s curvature
through �.

Limits of linearity. In the nonlinear equations in (1.7) through (1.11), both waves and
flow acquire slow but non-infinite time-scales associated with slight departures from the linear
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balances in (1.17) through (1.21). If we denote the fast wave time-scale t̃ and the flow time-scale
t̄, the nearly-linear solutions to (1.7) through (1.11) become

Q = Q(x, t̄) , and w(x, t̃, t̄) =
X

n

e�i�n˜tAn(x, t̄) . (1.31)

The methods of this dissertation are, crudely put, to (i) derive an equation for the slow evolution
of Q which isolates the ‘average’ e↵ects of waves over the long time-scales of t̄, and (ii) restrict
attention to one or two frequencies �n and derive slow evolution equations for An that couple
to the slow evolution of Q. We next discuss how to isolate the slow evolution of Q from (1.7)
through (1.11) in the classic case of quasi-geostrophic flow.

1.2.3 Interaction and non-interaction of waves and flow

One of the main accomplishments of this dissertation is the definition of a new material invariant
named ‘Available Potential Vorticity’, or APV. A comprehensive introduction to APV is given
in chapter 2.2. One definition of APV is

Q(x, t)
def

= ⇧(x, t) � ⇧⇤(x � ⌅) , (1.32)

where ⇧ is Ertel PV defined in (1.15), ⇧⇤
def

= fN2 is its static ‘background’ part, and ⌅(x, t)
is exact nonlinear particle displacement defined through Dt⌅ = u. Because Dt⇧ = 0 and
Dt (x � ⌅) = 0, APV is materially conserved, so that

DtQ = 0 . (1.33)

APV isolates the part of potential vorticity with a meaningful, intrinsic evolution. When f = f
0

is constant, Q expands for !/f
0

⇠ bz/N2 ⌧ 1 into

Q = N2


! + @z

✓
f
0

b

N2

◆�
+ ! ·rb � f

0

⇤zz

N2

1

2

b2 + · · · , (1.34)

where ⇤
def

= lnN2.
The APV equation opens a relatively straightforward path to the result that the evolution

of quasi-geostrophic flow is independent from waves of equal ‘magnitude’ to leading-order in
Rossby number. This result was shown by Bartello (1995) and Majda & Embid (1998) for
the rotating Boussinesq equations and by Warn (1986) and Dewar & Killworth (1995) for the
shallow water equations. We define two non-dimensional parameters,

✏
def

=
U

f
0

L
, and Bu

def

=

✓
N

0

H

f
0

L

◆
2

, (1.35)

where N
0

, U , H, and L are characteristic scales for N , velocity, height, and horizontal extent
of the motion. The parameter ✏, which is both the Rossby number as well as a measure of wave
amplitude, is assumed small. Note that this definition of ✏ di↵ers from that in section 2.3.1,
where ✏ is a measure of wave amplitude only and the Rossby number is ✏2. The parameter
Bu is the Burger number, which measures the magnitude of the horizontal pressure gradient
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relative to inertia. The ratio f
0

/N
0

is almost always small in the Earth’s ocean except for
isolated, abyssal places. The standard quasi-geostrophic assumption is that H/L ⇠ f

0

/N
0

⌧ 1
such that Bu = O(1). This assumption reduces the vertical momentum equation (1.9) to the
statement of hydrostatic balance, pz = b.

The bread-and-butter asymptotic method of this dissertation is the multiple-scale ‘two-time’
expansion, which assumes the existence of two time-scales: a fast wave time-scale t̃ ⇠ f�1

0

, and
a slow flow-evolution time-scale t̄ ⇠ (✏f

0

)�1. Time-derivatives are accordingly split into

@t 7! @
˜t + ✏ @

¯t , (1.36)

The non-dimensional APV equation becomes

Q
˜t + ✏ (u ·rQ+Q

¯t) = 0 . (1.37)

All quantities are expanded in ✏, so that APV has the expansion

Q = N2

⇥
!
0

+ @z
�

b0
N2

�⇤

| {z }
def
=Q0

+ ✏
⇣

!

0

·rb
0

+N2

⇥
!
1

+ @z
�

b1
N2

�⇤

| {z }
def
=Q1

⌘
+ · · · (1.38)

Notice that Q
0

is just the linear APV from (1.22).
The leading-order velocity u

0

obeys the linear equations (1.17) through (1.21) with hy-
drostatic balance p

0z = b
0

replacing (1.19). By averaging over the fast time-scale, u

0

can be
decomposed into waves, ũ

0

, and flow ū

0

,

u

0

= ū

0

+ ũ

0

. (1.39)

The average is defined so that ¯̃a = 0 and (a
˜t) = 0, when a(x, t̃, t̄) is any variable decomposed

into fast and flow components. ũ

0

is a rapidly oscillating wave field governed approximately by
(1.23) and ū

0

is slowly-evolving quasi-geostrophic flow. ū

0

obeys geostrophic and hydrostatic
balance and can thus be expressed by a geostrophic streamfunction,

 
def

= p̄
0

, so that
�
ū
0

, v̄
0

, b̄
0

�
= (� y, x, z) . (1.40)

The non-interaction result follows in two-steps. At leading-order, the APV equation amounts
to a restatement of (1.22),

N�2Q
0

˜t = @
˜t


!
0

+ @z

✓
b
0

N2

◆�
= 0 . (1.41)

The integral of (1.41) implies that Q
0

= Q̄
0

(x, ⌧) does not depend on the fast time. The O(✏)
terms in the APV equation (1.37) are

Q
0

¯t +Q
1

˜t + u

0

·rQ
0

= 0 . (1.42)

Because Q
0

does not depend on the fast time t̃, the time-average of (1.42) is

Q
0

¯t + ū

0

·rQ
0

= 0 . (1.43)
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Equation (1.43) is the ordinary quasi-geostrophic equation. If we restore dimensionality, and
define the ‘quasi-geostrophic potential vorticity’ as q = Q

0

/N2, (1.43) rearranges into the
‘standard’ quasi-geostrophic equation with � = 0,

q
¯t + J ( , q) = 0 , with q

def

=

✓
@2x + @2y + @z

f 2

0

N2

@z

◆
 . (1.44)

The operator J(a, b) = axby �aybx is the Jacobian so that @t+J( , ·) = @t+ ū

0

·r is the wave-
averaged and leading-order material derivative. To time-scales at least as long as (✏f

0

)�1, the
evolution of q is independent from ũ

0

and thus internal waves. On longer time-scales, however,
the independence of q and ũ

0

is not secure.

1.3 The shape of things to come

This dissertation develops models in which waves and flow coevolve and interact with two-way
coupling. For this purpose we revise the assumption in chapter 1.2.3 that both waves and
flow are leading-order solutions to (1.7) through (1.11). Instead, we assume that waves are
‘strong’, and flow is ‘weak’, so that u

0

= ũ

0

and the leading-order solution of (1.7) through
(1.11) is a rapidly oscillating wave field. In this case, the quasi-geostrophic flow is part of the
first-order velocity u

1

, the leading contribution to APV is Q
1

, the small parameter ✏ measures
wave steepness, and the Rossby number is Ro = ✏2.

The work of chapter 2 is then to find a slow evolution equation for q = Q
1

/N2. This equation
resembles the classical quasi-geostrophic equation in (1.44) but for two crucial di↵erences: first,
geostrophic balance is modified and obeyed only by the Lagrangian-mean flow, rather than
the Eulerian-mean. The modified balance conditions are given in (2.50) and di↵er from the
traditional balance conditions in (1.28) and (1.27). Second, waves contribute to the APV
balance that defines q in (1.44). In consequence the APV equation in (2.1) and (2.2) becomes,
with � = 0,

q
¯t + J ( , q) = 0 , with q

def

=

✓
@2x + @2y + @z

f 2

0

N2

@z

◆
 + qw . (1.45)

Compare (1.45) to (1.44). The new ‘wave contribution to APV’, qw in (1.45), is defined in (2.3)
and modifies the evolution of quasi-geostrophic flow. The surprisingly mundane and kinematic
origins of qw are discussed in chapter 2.4.

The contribution of qw to q in (1.45) does not imply that ‘waves have APV’. The APV in
q is still a material invariant advected on the time-averaged particle trajectories described by
 and decidedly a quantity wholly separate from waves. Instead, the inclusion of qw in the
APV balance implies that waves are associated with their own, wave-induced balanced flow
that partakes in flow evolution by advecting q. We make this explicit by exploiting the fact
that q is linear in  , which permits the decomposition

 =  q +  w , (1.46)
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where  q and  w are defined through

q =

✓
@2x + @2y + @z

f 2

0

N2

@z

◆
 q , and � qw =

✓
@2x + @2y + @z

f 2

0

N2

@z

◆
 w . (1.47)

The balanced flow thus has two parts: an ordinary, APV-associated part in  q, and a wave-
induced part in  w. The e↵ect of waves on flow evolution is expressed entirely in the advection
of q by  w.

The wave-induced balanced flow  w is a nonlinear correction that refines linear hydrostatic
wave solutions to better satisfy the nonlinear equations in (1.7) through (1.11). Because infinite
plane progressive waves are exact solutions to the nonlinear equations (1.7) through (1.11)
when N and f are constant, such waves have qw = 0 and no wave-induced balanced flow. Even
vertically-standing but horizontally infinite waves have no wave-induced flow because qw and
 w are horizontally uniform. In that case  w corresponds to steady z-dependent corrections
to the pressure and buoyancy fields. Deeper intuitions on wave-induced balanced flows are
developed in chapter 2.5.

Infinite plane waves are mathematical figments that do not exist in the Earth’s ocean where
wave forcing is time-varying and spatially-modulated, f and N are not constant, and hetero-
geneities like quasi-geostrophic flow advect, refract, and otherwise distort wave fields aspiring
to linearity. Such distortion enhances wave field nonlinearity, leading to stronger  w and wave
‘feedback’ on flow evolution and exposing the incompleteness of equation (1.45): the wave prop-
erty qw is not known in general and worse, depends on  q and q. To close the APV equation
in (1.45) we need an equation that describes the slow evolution of the wave field and  w in
quasi-geostrophic flow describe by the distribution of q. This is the goal of chapters 3 and 4,
which separately focus on coupling (1.45) to one of the two conspicuous peaks in figure 1.1: the
near-inertial peak in chapter 3, and the tidal peak in chapter 4.

The derivation of the near-inertial equation in chapter 3.3 is particularly tractable due
to the weak dispersion of near-inertial waves. Motivated by observations and simulations of
the Boussinesq equations that persistently observe near-inertial second harmonic waves with
frequency 2f

0

when near-inertial waves interact with quasi-geostrophic flow (D’Asaro et al.,
1995; Niwa & Hibiya, 1999; Danioux et al., 2008), the model is extended to include the nonlinear
production and slow evolution of waves frequency 2f

0

. The result is a closed three-component
model that describes the simultaneous evolution of APV, the amplitude of the near-inertial
waves, and the amplitude of the near-inertial second harmonic. Peculiarly, the two distinct
adiabatic invariants of the model identified in chapter 3.6 imply that near-inertial waves can
extract energy from quasi-geostrophic flows under ordinary oceanic conditions. Chapter 3.7
compares numerical solutions to the three-component model with the Boussinesq equations
and chapter 3.8 discusses the physics these solutions imply.

The interaction between internal tides and quasi-geostrophic flow is tackled in chapter 4.
Distilling the slow evolution of internal tides is more di�cult than the near-inertial case and
equivalent to finding a slow evolution equation for general-frequency hydrostatic internal waves
in quasi-geostrophic flow. Key to deriving the internal tide model is the method of reconstitution
(Roberts, 1985), which in a sense generalizes the derivation of the 2f

0

equation in chapter 3.
Two solutions to the hydrostatic wave model for barotropic flow are discussed in chapter 4.5.
Further work remains to couple the slow hydrostatic wave evolution to the modified quasi-
geostrophic system in (2.1) through (2.3).



Chapter 2

Available potential vorticity and
wave-averaged quasi-geostrophic flow

2.1 Introduction

The quasi-geostrophic (QG) approximation is a reduced description of the slow dynamics of
planetary flows which, being perturbations on a state of rapid rotation and strong stratification,
are nearly in geostrophic and hydrostatic balance. QG is simple and elegant and describes many
characteristics of observed flows in the atmosphere and ocean. A main motivation for the QG
approximation is the exclusion of inertia-gravity internal waves, which oscillate on super-inertial
frequencies much faster than the sub-inertial time scales of QG flow evolution. This time-scale
separation motivates a central assumption in QG: internal waves have negligible e↵ect on slow,
nearly-balanced flow.

The assumption of weak interaction between internal waves and QG flow was assessed by
Bühler & McIntyre (1998, BM hereafter), who used the Generalized Lagrangian Mean (GLM)
to demonstrate that average wave terms contribute to the balance of the materially conserved,
wave-averaged quasi-geostrophic potential vorticity (QGPV). This ‘wave-QG’ theory is a sig-
nificant extension to the QG framework and demands detailed understanding. With this mo-
tivation, we provide an alternative Eulerian derivation of wave-QG which avoids the GLM
transformation of the Boussinesq equations. Our derivation, which relies instead on a multiple
time-scale expansion, confirms the main results of BM while extending the validity of wave-QG
to non-uniform buoyancy frequency N(z), and thus non-uniform background potential vorticity
f
0

N2(z). We make no assumption about spatial scale separation between waves and balanced
flow, so that our theory is relevant to mesoscale atmospheric flows and oceanic meso- and
submeso-scale flows where motion is mixed between large-scale waves and balanced geostrophic
turbulence (Callies, Bühler & Ferrari, 2014).

The challenge of non-uniform background stratification motivates the definition of a new
material invariant: available potential vorticity (APV). APV exactly eliminates the part of Ertel
PV that plays only a passive, background role, thereby isolating the part of PV available for
flow evolution. APV proves crucial for the derivation of wave-QG, where strong internal waves
generate large but unimportant Eulerian fluctuations in Ertel PV. The physical significance
of APV is suggested by the emergence of QGPV at leading-order in a low-Rossby-number
expansion of the exactly conserved APV.

Like the standard QG case (Pedlosky, 1982; Salmon, 1998; Vallis, 2006), the evolution of

12
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balanced flow in an internal wave field is described in terms of the quasi-horizontal advection
of QGPV, q, by a geostrophic streamfunction  ,

qt + J( , q) = 0 , (2.1)

where J( , q) =  xqy� yqx is the Jacobian in (x, y).  is the streamfunction of the Lagrangian-
mean velocity field, defined as the sum of Eulerian-mean and wave-induced ‘Stokes’ velocity
correction fields. The Lagrangian-mean velocity field determines particle trajectories that re-
main after rapid wave-induced oscillations are filtered; in this sense, (2.1) is consistent with our
usual understanding of potential vorticity as a material invariant.

The wave-averaged QGPV in (2.1) includes the standard QGPV as well as an average,
quadratic wave contribution, qw,

q
def

=
⇣
@2x + @2y
| {z }

def
=4

+ @z
f 2

0

N2

@z
| {z }

def
=L

⌘
 + �y + qw . (2.2)

In (2.2), f
0

is the Coriolis frequency at fixed latitude, N(z) is the buoyancy frequency, and �
models the latitudinal variation of Coriolis frequency. Two operators are defined in (2.2): the
horizontal Laplacian 4 and the vertical derivative operator L. We provide several equivalent
expressions for qw in appendix 2.B. One appealing form is

qw = J(u, ⇠) + J(v, ⌘) + f
0

J(⇠, ⌘)
| {z }

� ẑ ·r⇥p

+1

2

f
0

�
⇠i⇠j
�
,ij

, (2.3)

where the overbar is a time or phase average over the linear internal wave field: a ‘wave
average’. The linearized wave particle displacement, ⇠ = ⇠ x̂ + ⌘ ŷ + ⇣ ẑ, is defined through
u = ⇠t and the rightmost term in (2.3) employs indicial notation for which summation over
repeated indices is implied. In (2.3) we indicate the BM relation between qw and the curl of
p, the pseudomomentum defined in (2.144) and by Andrews & McIntyre (1978). The term
‘wave-averaged’ is used deliberately to emphasize the particular consequences of averaging over
wave fields as opposed to averaging over turbulent fluctuations, for example.

Equations (2.1) through (2.3) describe the interaction of balanced flow with a non-transient
internal wave field generated steadily at distant boundaries or maintained by external forcing.
This di↵ers from the geostrophic adjustment scenario considered by Zeitlin, Reznik & Ben
Jelloul (2003) and from spontaneous loss of balance discussed, for example, by Vanneste (2013).
In the case of geostrophic adjustment, wave-mean interaction is precluded by transient wave
decay due to radiation from a compact region of initial excitation (Reznik, Zeitlin & Ben Jelloul,
2001). Spontaneous loss of balance, on the other hand, is characterized by an exponentially
small dependence on Rossby number and is not accessible by the straightforward perturbation
expansion used to derive (2.1) through (2.3).

The appearance of qw in (2.2) implies dynamic and energetic interaction between externally-
forced internal waves and mean, balanced flow. This point is discussed explicitly by Kataoka &
Akylas (2015) for wave-beams in non-rotating flow and Xie & Vanneste (2015) for near-inertial
waves in rotating flow. In particular, Xie & Vanneste (2015) couple the wave-QG system in
(2.1) through (2.3) with an equation describing slow near-inertial wave evolution, and show
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that conservation laws of their coupled system suggest near-inertial waves extract energy from
balanced flow.

The Eulerian route to the wave-averaged QG equation in (2.1) through (2.3) starts with
‘Available Potential Vorticity’ (APV), introduced in chapter 1.2.3 and discussed in detail in
chapter 2.2. APV provides invaluable simplifications in the derivation of the wave-averaged
potential vorticity conservation equation. We propose an expansion in wave amplitude and
method of multiple-time-scales in chapter 2.3. This Eulerian path provides contrasting scenery
from the GLM route; for example, the wave-averaged geostrophic balance condition is that
 , the balanced streamfunction in (2.1), is equal to the Eulerian mean pressure plus half of
the Stokes pressure correction divided by the Coriolis frequency f

0

. In chapter 2.4 we discuss
in detail the kinematic origins of qw. In chapter 2.5 we apply the theory by computing the
balanced flow induced by a vertically propagating wave packet and by a vertical mode-one
internal wave field, both in bounded domains.

The main algebraic di�culties of the wave-QG derivation lie in the many equivalent forms for
qw that follow from a slew of quadratic identities for the linearized and hydrostatic Boussinesq
system. We find that some simple forms for qw bear little resemblance to the pseudomomentum-
based expression in BM. These technical details, including a demonstration of equivalence
between GLM-derived and Eulerian-derived expressions for qw, are in appendices 2.A and 2.B.

2.2 Available potential vorticity

The derivation of (2.1) through (2.3) is simplified by introduction of a new material invariant:
the available potential vorticity (APV), whose dynamics follow from the exact PV equation.

We motivate the definition of APV with a thought experiment. Consider a fluid at rest with
� = 0. The potential vorticity is ⇧ = f

0

N2(z) = f
0

B0
⇤(z), where B⇤(z) is the resting buoyancy

field introduced in (1.2). Since B⇤(z) and B0
⇤(z) depend only on z, we can write B0

⇤ in terms of
B⇤ with the functional relation

B0
⇤ = F(B⇤) . (2.4)

When � = 0, PV and buoyancy are related in the rest state by ⇧ = f
0

F(B⇤), so that PV is
constant on surfaces of constant buoyancy.

Now suppose the fluid is brought into motion by a process that conserves both ⇧ and total
buoyancy B⇤ + b. An example is the excitation of internal waves by the oscillation of flexible
boundaries. Because both PV and total buoyancy are conserved on fluid elements, the resting
functional relationship is preserved, implying that in the moving state

⇧ = f
0

F(B⇤ + b) . (2.5)

The functional relation (2.5) characterizes a special situation where the PV signature in the
fluid arises solely from internal wave advection of the resting, non-uniform PV distribution,
f
0

B0
⇤ = f

0

N2(z). In this special case, the PV does not have a separate evolution equation, and
is entirely determined through (2.5) by the buoyancy perturbation b of the wave field.

Our aim is a description of flows with PV which is free to evolve independently from the rest-
state relation (2.5), while avoiding the strenuous bookkeeping required to track the Eulerian
advection of the non-uniform background state. We thus define the APV, Q(x, t), as the
di↵erence between the total PV and the PV arising by advection of the background buoyancy
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field,

Q
def

= ⇧� f
0

F(B⇤ + b) . (2.6)

The construction in (2.6) is analogous to Holliday & McIntyre’s (1981) definition of available
potential energy. By shedding the part of ⇧ which is trivially related to buoyancy through
(2.4), APV isolates the part of ⇧ available to balanced-flow evolution.

An alternative definition of APV, which is equivalent to (2.6) in the small-displacement
scenarios considered in this dissertation, is

Q
def

= ⇧� ⇧⇤ (x � ⌅) , (2.7)

where ⇧⇤ = fN2 is the static, background part of potential vorticity and ⌅ is the exact particle
displacement defined through Dt⌅ = u. The definition in (2.7) clearly shows how APV isolates
the dynamic part of PV and includes the horizontal variations in background PV on the �-
plane, while (2.6) is easier to expand when ⌅ and b are small. We use the definition in (2.6)
for the remainder of this dissertation.

Unfurling the components of ⇧ in (1.14), the APV defined in (2.6) becomes

Q = N2 (! + �y) + (f
0

+ �y) bz + ! ·rb+ f
0

⇥F(B⇤) � F(B⇤ + b)
⇤
, (2.8)

where !
def

= vx�uy is the vertical component of the vorticity !. Because ⇧, B⇤+b, and therefore
f
0

F(B⇤ + b) in (2.6) are material invariants, APV is also a material invariant and thus

DtQ = 0 . (2.9)

Unlike Ertel PV, APV is zero for a fluid at rest with u = ⌅ = b = 0 and � = 0. And APV is
zero in the thought experiment surrounding (2.5). In general, however, APV is non-zero.

The QG approximation is based on a scaling that assumes relatively small vertical displace-
ments, which implies b ⌧ B and that (2.8) can be expanded to yield

Q = N2 (! + �y) + (f
0

+ �y) bz + ! ·rb � f
0

bF 0(B⇤) � 1

2

f
0

b2F 00(B⇤) +O
�
b3
�
, (2.10)

= N2


! +

✓
f
0

b

N2

◆

z

+ �y

�
+ ! ·rb � f

0

⇤zz

N2

1

2

b2 +O
�
b3, �ybz

�
, (2.11)

where in (2.11) we have defined

⇤
def

= lnN2 . (2.12)

In passing from (2.10) to (2.11) the derivatives F 0(B⇤) and F 00(B⇤) are expressed in terms of
N2 by taking implicit z-derivatives of the functional relation (2.4). The expansion in (2.11) is
a generalization of the quantity appearing in equation (3.13) of Zeitlin et al. (2003) in their
theory of nonlinear geostrophic adjustment.

The term in square brackets in (2.11) is the familiar quasi-geostrophic potential vorticity
(QGPV). Note that QGPV cannot be obtained from ⇧ by merely assuming geostrophic and
hydrostatic balance, so that (u, v, b) = (� y, x, f0 z). This assumption produces the incorrect
expression (f 2

0

/N2) zz for the vortex stretching term rather than the correct @z
⇥
(f 2

0

/N2) z

⇤
.

This error reflects that, in the standard derivation, the correct form of QGPV is completed
by advection of the large z-dependent background PV by ageostrophic vertical velocity. On
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the other hand, the derivation of QGPV using the expansion of APV in (2.11) is immediate:
QGPV is the leading-order term in a low-Rossby-number expansion of APV. APV also provides
a quick and intuitive route to the ‘non-interaction’ theorem, as discussed in chapter 1.2.3.

APV thus has both conceptual and computational utility. Conceptually, the exact, unaver-
aged APV can be viewed as a generalization of QGPV, which implies that Eulerian Ertel PV
may not be the most relevant physical quantity for describing flow evolution on a non-uniform
background state. Computationally, APV provides essential simplifications in the derivation of
wave-QG by removing distractingly large fluctuations in PV from our Eulerian reference frame.

2.3 An expansion in wave amplitude

To derive wave-QG, we adopt a scaling which assumes small-amplitude flow and develop parallel
expansions of the Boussinesq system (1.7) through (1.11) and the APV equation (2.9). We
assume the balanced flow is weak, in that internal waves comprise the leading-order solution,
while balanced flow is described only at next order alongside quadratic wave quantities.

2.3.1 Linearity of the leading-order solution

We denote the characteristic horizontal velocity of the waves by Ũ , the characteristic length
scale of the flow by L, and assume the characteristic time scale is given by the Coriolis frequency
f
0

. The linearity of the wave field then requires that

✏
def

=
Ũ

f
0

L
(2.13)

is much less than unity. We use the small parameter ✏, which is a measure of wave amplitude
analogous to steepness for surface waves, to distinguish each level of approximation in the
development of the Boussinesq and APV equations.

2.3.2 The Rossby number and ‘two-timing’

We use a common vertical scale H and common horizontal length scale L for both the internal
waves and the balanced flow. While this scaling ultimately limits attention to hydrostatic
internal waves, it otherwise retains generality in the derivation, allowing both for consideration
of comparable wave-mean spatial scales as well as further approximation based on spatial-scale
separation.

If we denote the characteristic velocity of the balanced flow by Ū , the assumption of weak
balanced flow is expressed by the scaling Ū = ✏Ũ . The Rossby number of the balanced flow is
then

Ro
def

=
Ū

f
0

L
= ✏2 . (2.14)

The Rossby number is a measure of time-scale separation between fast wavy motions oscil-
lating on f�1

0

and the slower balanced flow evolution over L/Ū . To construct a single system
of equations that captures the fast wave oscillations as well as the slow evolution of balanced
flow, we use a multiple time scale expansion with “fast” time t̃ = f

0

t and slow time t̄ = tŪ/L,
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so that
@t 7! f

0

�
@
˜t + ✏2@

¯t

�
. (2.15)

This ‘two-timing’ also necessitates the introduction of an average over the fast time, which we
denote with an overbar. If �(x, t) is any field, then

�̄(x, t)
def

=
1

T

Z t+T/2

t�T/2

�(x, t) dt , where
1

f
0

⌧ T ⌧ L

Ū
. (2.16)

The wavy part of �, denoted �̃, is defined via

� = �̄+ �̃ . (2.17)

The averaging or filtering operation in equation (3.19) is not unique. Alternatively we can view
the overbar as a filtering operation which, in principle, removes wave time-scales from � exactly.

We assume that �̄ has no dependence on the fast time t̃ and that the average of the wavy
fields is zero, or equivalently, that ¯̄� = �̄. In the context of the perturbation expansion, this
amounts to an assumption that average quadratic properties of the wavy fields — for example
the Stokes velocity or average wave energy — evolve on the slow time scale L/Ū . Our focus on
mean flow evolution means that the multiple-scale expansion in (2.15) neglects the nonlinear
wave evolution time-scale L/Ũ = (✏f

0

)�1, which is intermediate between f�1

0

and L/Ū = ✏2f�1

0

.

2.3.3 The non-dimensional Boussinesq and APV equations

We non-dimensionalize the Boussinesq equations with the two time scales in (2.15), the hori-
zontal scale L, and vertical scale H such that

(x, y) = L(x̌, y̌) , and z = Hž , (2.18)

where the “hat” decoration denotes a non-dimensional quantity. We assume that the vertical
and horizontal scales are related by

Bu
def

=

✓
N

0

H

f
0

L

◆
2

= 1 , where N(z) = N
0

Ň(z) , (2.19)

and Bu is the Burger number. In (2.19), N
0

is the characteristic magnitude of the buoyancy
frequency N(z). Bu = 1 is standard scaling in the quasi-geostrophic approximation. The flow
variables are scaled with

(u, v) = Ũ (ǔ, v̌) , w = H
L Ũ w̌ , b = N

0

Ũ b̂ , p = f
0

LŨ p̌ . (2.20)

� in the Coriolis frequency f = f
0

+ �y is scaled with

� =
Ū

L2

�̂ , such that f = f
0

�
1 + ✏2�̌ŷ

�
. (2.21)

The scaling in (2.21) ensures the e↵ect of � arises first in the QGPV equation. The scaling
in (2.19) restricts attention to hydrostatic internal waves, but otherwise does not restrict wave
field spatial scales.
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We use these definitions to non-dimensionalize the Boussinesq equations and lighten the
notation by dropping all decorations except for those on the fast time scale t̃ and slow time
scale t̄. The non-dimensionalized Boussinesq equations then become

u
˜t � v + px = �✏u ·ru � ✏2 (u

¯t + �yv) , (2.22)

v
˜t + u+ py = �✏u ·rv � ✏2 (v

¯t � �yu) , (2.23)

pz � b = � (↵✏)2
⇥
w

˜t + ✏u ·rw + ✏2w
¯t

⇤
, (2.24)

b
˜t + wN2 = �✏u ·rb � ✏2b

¯t , (2.25)

r · u = 0 , (2.26)

where in the vertical momentum equation we have introduced ↵
def

= H/(✏L). To justify the
hydrostatic approximation, ↵ is fixed at order unity as ✏ ! 0.

APV is scaled with N2

0

Ũ/L, so that from (2.11) the non-dimensional APV becomes

Q = N2

"
vx � uy +

✓
b

N2

◆

z

#
+ ✏

"
N2�y + ! ·rb � ⇤zz

N2

1

2

b2
#
+O

�
✏2
�
, (2.27)

where ⇤ = lnN2 and
! = �vz x̂ + uz ŷ + (vx � uy) ẑ +O

�
✏2
�
, (2.28)

is the vorticity. The scaled APV evolution equation from (2.9) is

Q
˜t + ✏u ·rQ+ ✏2Q

¯t = 0 . (2.29)

Each field is expanded in powers of ✏ so that, for example, u = u
0

+✏ u
1

+ · · · . We proceed order
by order, using dimensional variables for clarity but employing the non-dimensional equations
(2.22) through (2.29) to guide the development.

2.3.4 Leading order: internal waves

The leading-order system is linear and describes hydrostatic internal waves,

u
0

˜t � f
0

v
0

+ p
0x = 0 , (2.30)

v
0

˜t + f
0

u
0

+ p
0y = 0 , (2.31)

p
0z = b

0

, (2.32)

b
0

˜t + w
0

N2 = 0 , (2.33)

r · u

0

= 0 . (2.34)

We eliminate quasi-steady solutions — the balanced vortical mode — by insisting that the
average of all leading-order fields is zero:

ū
0

= v̄
0

= w̄
0

= b̄
0

= p̄
0

= 0 . (2.35)

The leading-order wave particle displacement, ⇠

0

= ⇠
0

x̂ + ⌘
0

ŷ + ⇣
0

ẑ, is defined by

⇠

0

˜t = u

0

, and ⇠̄

0

= 0 . (2.36)
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Some important identities involving the wave particle displacement follow from the leading-order
system (2.30) through (2.34): the vertical vorticity equation, which is formed by subtracting
@y of (2.30) from @x of (2.31), can be manipulated using r · ⇠

0

= 0 and integrating in t̃ to find

v
0x � u

0y = f
0

⇣
0z . (2.37)

Integration of the buoyancy equation (2.33) yields

b
0

+N2⇣
0

= 0 . (2.38)

And then, eliminating the vertical displacement ⇣
0

between (2.37) and (2.38), we find the
leading-order APV is zero:

N�2Q
0

= v
0x � u

0y +

✓
f
0

b
0

N2

◆

z

, (2.39)

= 0 . (2.40)

The conclusion thatQ
0

= 0 follows alternatively by integrating the leading-order APV equation,
Q

0

˜t = 0, and applying (2.35) to determine that the constant of integration is zero. The leading-
order fields thus constitute internal waves oscillating on the fast time scale t̃ and with no
signature in the APV field.

We emphasize the importance of the fact that Q
0

= 0. Note that the first-order Ertel PV,
⇧

1

= N2(v
0x � u

0y) + f
0

b
0z, is not zero for internal waves described by (2.30) through (2.34)

— unless Nz = 0 and the background PV is therefore uniform. That the leading-order wave
field has PV, but no APV, is the first indication of APV’s utility in this problem. Increasingly
important but less obvious simplifications follow at subsequent orders in the APV equation
expansion.

2.3.5 First order: balanced flow and quadratic wave terms

The first-order fields are governed by

u
1

˜t � f
0

v
1

+ p
1x = �u

0

·ru
0

, (2.41)

v
1

˜t + f
0

u
1

+ p
1y = �u

0

·rv
0

, (2.42)

p
1z � b

1

= 0 , (2.43)

b
1

˜t + w
1

N2 = �u

0

·rb
0

, (2.44)

r · u

1

= 0 . (2.45)

Because the first-order fields are permitted to have non-zero time-averages, (2.41) through
(2.45) provide the definition of wave-averaged quasi-geostrophic balance.

Before proceeding in the derivation of (2.1) through (2.3), we observe that (2.41) through
(2.45) also describe slow, nonlinear wave evolution due to wave self-interaction. Such slow wave
evolution occurs when the right-side forcing resonates with the left-side linear internal wave op-
erator (Müller et al., 1986). As we do not describe wave evolution in this paper, we ignore this
possibility, but note that a consistent description of wave and balanced flow coupled evolution
requires treatment of nonlinear wave field self-interaction and careful accounting of time-scales
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involved. In particular, wave self-interaction produces a time-scale (✏f
0

)�1, intermediate be-
tween the linear wave and balanced flow evolution scales f�1

0

and ✏2f�1

0

accounted for here.
Including the time-scale (✏f

0

)�1 does not significantly change the basic result of this paper, but
would require filtering (✏f

0

)�1 from (2.1) through (2.3) to produce a consistent description of
balanced flow evolution.

Averaging equations (2.41) through (2.45) over the fast time and rearranging terms, we can
suggestively write the first-order mean velocities and averaged quadratic wave quantities as

f
0

(ū
1

+ u

w) = �r⇥ p̄
1

ẑ = �p̄
1y x̂ + p̄

1x ŷ , (2.46)

where the wave velocity u

w is defined by

u

w

def

= f�1

0

u

0

·rv
0

x̂ � f�1

0

u

0

·ru
0

ŷ +N�2

u

0

·rb
0

ẑ . (2.47)

In appendix 2.A we show that u

w can be written in terms of more familiar wave-averaged
properties as

u

w = u

S + f�1

0

r ⇥ 1

2

pS ẑ , (2.48)

where
u

S

def

= (⇠
0

·r)u

0

and pS
def

= ⇠

0

·rp
0

(2.49)

are the Stokes corrections to mean velocity and pressure fields (Bühler, 2009; Craik, 1988).
Using (2.48) to eliminate u

w from (2.46), we obtain the wave-averaged geostrophic balance
condition,

ū

1

+ u

S

| {z }
def
= uL

= �r ⇥ f�1

0

�
p̄
1

+ 1

2

pS
�

| {z }
def
=  

ẑ . (2.50)

Notice that w̄ = �wS, so that wL = 0. As in standard QG, the vertical component of the
balanced velocity is zero.

The wave-averaged hydrostatic relation follows from (2.129) and (2.50):

f
0

 z = b̄
1

+ ⇠

0

·rb
0| {z }

def
= bL

+ (N2)z
1

2

⇣2
0

. (2.51)

The final term in (2.51) is a Stokes correction associated with the resting buoyancy distribution
B(z) in (1.2); note that (N2)z = B00. Equation (2.51) relates the Lagrangian-mean streamfunc-
tion to the wave-averaged buoyancy field through wave-averaged hydrostatic balance.

Compare the wave-averaged balance conditions in (2.50) and (2.51) with the standard quasi-
geostrophic balance conditions u

0

= �r ⇥ f�1

0

p
0

ẑ and p
0z = b

0

. Our derivation of wave-
averaged balance shows that the ordinary sense of geostrophic balance from wave-ignoring QG
theory is retained after wave-averaging only for the Lagrangian-mean flow, u

L. The Eulerian-
mean flow is not balanced.

The appearance of half the Stokes pressure correction in the balance condition (2.50) is
a distinctive feature of the wave-averaged balance equations. The factor 1

2

enters these basic
relations via the quadratic wave identities (2.127) through (2.129). As in the standard QG
approximation, the balance condition in (2.50) is redundant with the continuity equation, and
we must seek an equation for mean-flow evolution at higher orders of approximation.
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We turn to the APV equation (2.29), which at first order is

Q
1

˜t = 0 . (2.52)

Integrating in t̃, we are compelled to conclude that the first-order APV, Q
1

, does not depend
on the fast time t̃. In other words, Q̃

1

= 0 and

Q
1

= Q̄
1

= N2

"
v̄
1x � ū

1y +

✓
f
0

b̄
1

N2

◆

z

+ �y

#
+ !

0

·rb
0

� f
0

⇤zz

N2

1

2

b2
0

. (2.53)

This result — which follows directly from expansion of the APV conservation equation —
produces major simplifications at next order and is not readily apparent from the first-order
Boussinesq equations (2.41) through (2.45).

2.3.6 Second and third order: an evolution equation for Q1

We proceed to higher orders only in the APV equation (2.29). At second-order, the APV
equation is

Q
2

˜t + u

0

·rQ
1

= 0 . (2.54)

Because Q
1

is independent of the fast time t̃, we can integrate (2.54) to yield

Q
2

= �⇠

0

·rQ
1

+ Q̄
2

, (2.55)

where ⇠

0

is the wave particle displacement defined in (2.36) and Q̄
2

(x, t̄) is an unknown and
inconsequential function of integration.

At third-order the APV equation (2.29) is

Q
1

¯t +Q
3

˜t + u

0

·rQ
2

+ u

1

·rQ
1

= 0 , (2.56)

while its wave-average is
Q

1

¯t + ū

1

·rQ
1

+ u

0

·rQ
2

= 0 . (2.57)

Notice that Q
1

is independent of the fast time and therefore stays outside of the averaging
operation in (2.57). To manipulate the third term in (2.57) we use integration by parts and
indicial notation, where �,i denotes the ith derivative of � and summation over repeated indices
is implied. Using the expression for Q

2

in (2.55) and ū

0

= 0, we find

u

0

·rQ
2

= u
0iQ2,i = �u

0i

�
⇠
0jQ1,j

�
,i
, (2.58)

= �u
0i⇠0j,iQ1,j , (2.59)

= u

S ·rQ
1

. (2.60)

In passing from (2.58) to (2.59) we have used the fact that

u
0i⇠0j Q1,ij = 0 , (2.61)

which follows from the antisymmetry of u
0i⇠0j and the symmetry of Q

1,ij. Thus there is no
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“di↵usive” term in (2.60) and the wave-averaged third-order APV equation (2.57) is

Q
1

¯t + u

L ·rQ
1

= 0 , (2.62)

where u

L is the Lagrangian-mean velocity in (2.50). In analogy with the standard and unaver-
aged QG theory in which potential vorticity is attached to particle trajectories, here the mean
APV, Q

1

, is attached to mean particle trajectories determined by the balanced Lagrangian-
mean velocity u

L.

2.3.7 Quasi-geostrophic potential vorticity

To make the connection between (2.62) and conservation of the familiar QGPV we introduce

q
def

=
Q

1

N2

, (2.63)

and rewrite (2.62) as
q
¯t + J

�
 , q
�
= 0 . (2.64)

Recalling the expression for Q
1

in (2.53), and using the balance conditions in (2.50) and (2.51)
to replace ū

1

by  and pS, the wave-averaged QGPV is

q = (4 + L) + �y + qw , (2.65)

where operators 4 and L are defined in (2.2). The wave contribution to q in (2.65) is

qw =
!

0

·rb
0

N2

� vSx + uS

y �
✓
f
0

1

2

pSz
N2

◆

z

� f
0

⇤zz
1

2

⇣2
0

. (2.66)

A slew of quadratic wave identities implied by (2.30) through (2.34) allow qw to be written in
many equivalent forms. Some are more compact than (2.66), and to make contact with BM we
show in appendix 2.B that

qw = J(u
0

, ⇠
0

) + J(v
0

, ⌘
0

) + f
0

J(⇠
0

, ⌘
0

)
| {z }

� ẑ ·r⇥p

+ 1

2

f
0

�
⇠
0i⇠0j

�
,ij

, (2.67)

where p, defined in (2.144), is the leading-order internal wave pseudomomentum introduced by
Andrews & McIntyre (1978).

The result in (2.67) indicates agreement between our Eulerian derivation and the BM GLM
derivation. The main di↵erence is that BM assumes a slowly varying wave field; in that case
the ‘wave-averaged vortex stretching’ 1

2

f
0

(⇠
0i⇠0j),ij , on the right of (2.67) with two external

derivatives, is smaller than ẑ ·r⇥p appearing in (2.67) as well as equations (1.4) and (9.29) in
BM. If spatial-scale separation assumption is not assumed, the GLM-derived formulation also
contains 1

2

f
0

(⇠
0i⇠0j),ij (Holmes-Cerfon et al., 2011).

We identify two distinct parts of qw: the ‘pseudovorticity’, ẑ·r⇥p, and wave-averaged vortex
stretching 1

2

f
0

(⇠
0i⇠0j),ij . The appearance of pseudovorticity, a relative vorticity term which

appears in wave-averaged circulation integrals, is a subtle and purely kinematic consequence of
wave-averaging: total wave-averaged fluid vorticity is ẑ ·r⇥(uL �p), rather than ẑ ·r⇥u

L or
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ẑ ·r⇥ū. A demonstration of this kinematic fact is given in section 10.2.7 of Bühler (2009) for
non-rotating fluids and finite particle displacements and below in chapter 2.4 for the rotating
case with infinitesimal particle displacements.

The wave-averaged vortex stretching 1

2

f
0

(⇠
0i⇠0j),ij , on the other hand, is a vortex stretching

term which depends on spatial gradients in the mean-square wave displacement tensor ⇠
0i⇠0j.

Wave-averaged vortex stretching reflects the expansion and contraction of ‘wave-averaged fluid
elements’ due to non-zero divergence of u

L and thus of wave-averaged particle trajectories
in non-uniform wave fields as discussed in McIntyre (1988) and below in chapter 2.4. Such
expansion and contraction contributes to the PV balance in rotating flow. Wave-averaged
vortex stretching is the only wave contribution to q in two-dimensional flow, and in section 2.5
we show that wave-averaged vortex stretching is the leading-order wave contribution to the PV
balance for a mode-one, horizontally-modulated internal wave.

2.3.8 Boundary conditions

Boundary conditions for the wave-averaged QG equation (2.64) follow from evaluation of the
buoyancy equation (2.25) on the boundaries. We assume flat bounding surfaces in z so that
w = 0 in (2.25). We then expand (2.25) in powers of ✏ and recapitulate the expansion of
the APV equation (2.29). The leading-order buoyancy equation, b

0

˜t = 0, implies that b
0

= 0
and ⇣

0

= 0 at the boundaries. At ✏1 we find that b
1

does not depend on the fast time t̃ so
that b

1

= b̄
1

. At order ✏2 we integrate over the fast-time variable to obtain b
2

= �⇠

0

· rb̄
1

.
At order ✏3 we find in analogy with the calculation surrounding (2.57) that b̄

1

is advected by
the Lagrangian-mean velocity u

L. Finally, because b
0

= ⇣
0

= 0, the Stokes corrections in the
wave-averaged hydrostatic relation (2.51) vanish on the boundaries, so that f

0

 z = b̄
1

. Thus
the wave-averaged QG boundary condition is

 z¯t + J
�
 , z

�
= 0 . (2.68)

This is the standard QG boundary condition: there is no explicit wave-averaged contribution.

2.4 The kinematic and rather mundane origins of qw

The two terms in qw are pseudovorticity, �r⇥p, and the vortex stretching term 1

2

f
0

�
⇠
0i⇠0j

�
,ij
.

Each represents a contribution to the deformation of a ‘wave-averaged fluid element’ by an
arbitrary incompressible oscillatory flow. These wave-induced contributions are properties of
the oscillatory, zero-average flow field. In this sense the contributions are hidden from an
observer with knowledge only of the wave-averaged flow.

2.4.1 The wave-averaged fluid element

The concept of a wave-averaged fluid element is central to understanding the kinematic origins
of qw. We loosely define the wave-averaged fluid element as a collection of average particle
positions which, taken together, bound an instantaneously irregular volume of fluid denoted by
F. Then, the time-average of the oscillating particle positions defines the smoother boundary
of the ‘wave-averaged fluid element’, which we denote with �. This definition implies that,
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at any particular moment in time, the position of particles whose averages are contained in �
have position

F def

= � + ✏ ⇠(x, t) . (2.69)

This notation is complemented by x̃ = x + ✏ ⇠, where the points x̃ lie in F and the points x

in �. We retain dimensionality and use the parameter ✏ only as a bookkeeping device.

2.4.2 Rotation of mean fluid elements

An intuitive quantification of fluid element rotation due to Batchelor (2000) can be obtained
by computing the angular velocity over the circumference of a small circular fluid element. If
the tangent to the circle is ds and the circle has radius ↵, then the point-wise angular velocity
of a fluid with background rotation rate 1

2

f
0

ẑ ⇥ x̂ is
�
u + 1

2

f
0

ẑ ⇥ x̂

�
· ds/↵. And the average

of this angular velocity over the circumfrence of a cirlce is

circumfrence-averaged e↵ective angular velocity =
1

2⇡↵2

I �
u + 1

2

f
0

ẑ ⇥ x

�
· ds , (2.70)

def

=
�

2⇡↵2

, (2.71)

where in (2.71) we have defined the circulation, �. The angular velocity calculated in this
way is only ‘e↵ective’ rather than exact because � includes contributions from strain as well as
rotation. Still, the interpretation is clear.

The rotation rate of a wave-averaged fluid element is thus found by computing the wave-
averaged circulation. Recall that the wave-averaged fluid element is outlined by � correspond-
ing to the average position of particles whose exact position is on an oscillating contour around
F. Thus to evaluate the circulation along �, the argument of the circulation integral defined
on F must be expressed in terms of points on � and subsequently averaged:

�̄ =

I

F

�
u + 1

2

f
0

ẑ ⇥ x

�
· ds , (2.72)

=

I

�

⇥ �
u + 1

2

f
0

ẑ ⇥ x

�
· ds

⇤
F . (2.73)

Our task is to evaluate the argument of the integral in (2.73) in terms of coordinates following
the contour �. The position vector x on F, for example, becomes x + ✏ ⇠ along �. An
ordinary Taylor expansion of the velocity field yields

u

��
F ⇡ ⇥

u + ✏ (⇠ ·r)u

⇤
� . (2.74)

Transforming the line element along F into a line element along � is more di�cult. In one-
dimension, for example, we have ds ⇡ ds+ ds ·r⇠. In three-dimensions,

ds

��
F ⇡ ds + ✏ (ds ·r) ⇠ . (2.75)
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The mean circulation around a mean fluid element is therefore

�̄ ⇡
I

�

⇥
u + ✏ (⇠ ·r)u + 1

2

f
0

ẑ ⇥ (x + ✏ ⇠)
⇤
·
⇥
ds + ✏ (ds ·r) ⇠

⇤
, (2.76)

⇡
I

�

1

2

f
0

(ẑ ⇥ x)i dsi + ✏

I

�

h
ū
1i + ⇠ju0i,j
| {z }

def
= uL

+ ⇠j,iu0j +
1

2

f
0

⇠j,i(ẑ ⇥ ⇠)j| {z }
def
=�p

i
dsi . (2.77)

In (2.77) we define the pseudomomentum. Note that we have not assumed anything about ⇠

except that it has zero time-average. The appearence of pseudomomentum in (2.77) is a purely
kinematic consequence of averaging over oscillatory particle displacements.

The e↵ective wave-averaged angular velocity of the mean fluid element � is thus

�̄

2⇡↵2

= 1

2

f
0

+
✏

2⇡↵2

I

�

⇥
u

L � p
⇤
· dx , (2.78)

where f
0

/2 is the background rotation rate of the fluid. The mean angular velocity of the mean
fluid element cannot be diagnosed by observing the motion of the mean element, or equivalently
by diagnosing its circulation with u

L. Notice that if ↵ and therefore � are small, we have

�̄ = ⇡↵2f
0

+

Z

�
r ⇥ �uL � p

�
· n̂ dA ⇡ ⇡↵2

⇥
f
0

+ n̂ ·r ⇥ �uL � p
�⇤

, (2.79)

and therefore the rotation rate of elements in a frame that rotates with angular frequency f
0

/2
is

average rotation rate of wave-averaged elements ⇡ 1

2

n̂ ·r ⇥ �uL � p
�
. (2.80)

Compare this to
rotation rate of exact fluid elements ⇡ 1

2

n̂ ·r ⇥ u . (2.81)

The pseudovorticity is a contribution to the rotation rate of a wave-averaged fluid element
that is ‘hidden’ by the averaging procedure. It’s origin is surprisingly mundane, being purely
kinematic and geometric and independent from the particular physics of the oscillatory field.
The appearance of pseudomomentum in (2.80) means that observations of average particle
trajectories, which correspond to knowledge of u

L, are insu�cient to calculate the rotation rate
of wave-averaged fluid elements. It is in this sense that �r⇥p is a hidden contribution to the
wave-averaged element rotation rate.

2.4.3 Dilation of wave-averaged fluid elements

The average volume of a wave-averaged fluid element is

V =

Z

F
dṼ , (2.82)

where dṼ is an infinitesimal volume in the unaveraged and exact fluid element. To evaluate
this integral in terms of coordinates in the wave-averaged fluid element we use the coordinate
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≈ 1
2∇ × �u

L − p� ⋅

≈ 1
2∇ ×u ⋅

= V += V +
∇ ×u ⋅

∇ × �uL −
= � + � � �

V̄ �1 + 1
2✏2 �⇠

i

⇠
j

�
,ij

�V̄ �

Figure 2.1: Kinematics of exact and wave-averaged fluid elements. The time-averaged rotation rate and volume
of wave-average fluid elements contain contributions that depends solely on the spatial structure of the zero-
average oscillatory field and thus cannot be calculated solely from knowledge of the average particle trajectories
represented by u

L. The contributions are purely kinematic in that they do not depend on the particular physics
of the oscillatory field. If the oscillatory field is divergent, its contribution to wave-averaged volume is given by
the three Jacobians in (2.85) rather than 1

2 (⇠
i

⇠
j

)
,ij

.

transformation

dṼ =
@ (x + ✏ ⇠)

@ (x)
dV̄ , (2.83)

where dV̄ is an infinitesimal volume in the wave-averaged fluid element. With this transforma-
tion, V becomes

V =

Z

�

@(x+ ✏ ⇠, y + ✏ ⌘, z + ✏ ⇣)

@(x, y, z)
dV̄ , (2.84)

=

Z

�

"
1 + ✏r · ⇠ + ✏2

✓
@(⇠, ⌘)

@(x, y)
+
@(⇠, ⇣)

@(x, z)
+
@(⌘, ⇣)

@(y, z)

◆
+ · · ·

#
dV̄ , (2.85)

=

Z

�
1 � ✏2 1

2

�
⇠i⇠j
�
,ij

dV̄ . (2.86)

The last step converting the three Jacobians into the compact form 1

2

�
⇠i⇠j
�
,ij

uses (r · ⇠)2 = 0.
This calculation implies the volume of the mean fluid element is given by

V ⇡ V̄
⇣
1 � ✏2 1

2

�
⇠i⇠j
�
,ij

⌘
, (2.87)

where V̄ is the volume calculated naively by direct inspection of the wave-averaged particle
trajectories. As in the case of wave-averaged fluid element rotation, observations of the wave-
averaged position of fluid particles expressed by knowledge of u

L are insu�cient to determine
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the volume of the wave-averaged fluid element. The volumetric fraction 1

2

�
⇠i⇠j
�
,ij

is ‘hidden’
by time-averaging.

2.5 Wave-induced mean motion

The wave-averaged PV in (2.65) implies that internal waves induce balanced mean flows. We
illustrate this by considering a scenario in which a wave packet propagates into previously
quiescent fluid with � = 0 and zero APV, or q = 0. With q = 0 in the undisturbed state, the
PV equation (2.64) reduces to

(4 + L) = �qw . (2.88)

Equation (2.88) is an elliptic equation which determines the mean streamfunction,  , induced
by an arbitrary hydrostatic internal wave field associated with the vorticity source qw defined
in (2.67). The wave-induced mean motion satisfies wave-averaged geostrophic balance, has no
APV, and is slaved to the wave field. An expanded form of qw is

qw = J(u, ⇠) + J(v, ⌘) + f
0

J(⇠, ⌘)

+
f
0

2

h�
⇠2
�
xx

+
�
⌘2
�
yy

+
�
⇣2
�
zz
+ 2
�
⇠⌘
�
xy

+ 2
�
⇠⇣
�
xz

+ 2
�
⌘⇣
�
yz

i
.

(2.89)

The subscript ‘0’ on wave fields will be omitted for the remainder of this paper.
We investigate the consequences of (2.88) by contrasting  and u

L induced in a vertically-
bounded domain by a vertically-propagating plane wave packet (‘plane’) with  and u

L induced
by a horizontally-propagating wave packet with mode-one vertical structure (‘mode’). The
planar and modal wave packets we consider are visualized in figure 2.2.

2.5.1 The Bretherton flow: mean motion induced by a vertically-
propagating plane wave

Bretherton (1969) considered the mean motion induced by a vertically-propagating plane inter-
nal wave packet in a non-rotating fluid. Here, we consider the rotating case by solving (2.88).
The pressure field associated with the plane wave packet is

p
��
plane

= a(x, y, z, t) cos(kx+mz � �t) , (2.90)

where k and m are horizontal and vertical wavenumbers, � is frequency, and a is a three-
dimensional envelope function with horizontal scale ` and vertical scale h. The scale-separation
parameter is

µ
def

=
1

k`
. (2.91)

We assume a is slowly varying so that µ ⌧ 1 and (hm)�1 ⇠ µ ⌧ 1.
Because µ ⌧ 1, we drop y-derivative terms from (2.30) through (2.34) to compute u, ⇠,

and b associated with p in (2.90). These expressions are accurate to O(µ) and listed in table
2.1. A particularly useful result is the reduction of (2.31) to

v + f
0

⇠ = O(µv) . (2.92)
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fig 2

fig 3

fig 2

fig 3

plane mode

Figure 2.2: Visualization of the vertically-propagating plane wave (left) and horizontally propagating mode-one
wave (right) with isosurfaces of pressure, p, at 0.325 and -0.325 of its maximum value. Wave fields are listed
in table 2.1. A surface in the yz-plane show the magnitude of wave-induced uL plotted in figure 2.3. A surface
in the xy-plane shows streamlines of u

L plotted in figure 2.4. Gray arrows indicate the direction of wave group
propagation. Physical parameters are f0 = 10�4 s�1, N = 2 ⇥ 10�3 s�1, � = 2f0, H = 4 ⇥ 103 m. The plane
wave vertical wavenumber is m = (16⇡H)�1, the horizontal wavenumbers are k = mf0

p
3/N for the plane wave

and k = 1

p
3 = ⇡

p
3f0/NH for the mode, and the scale-separation parameter is µ = (`k)�1 = (hm)�1 = 1/4.

With u and ⇠, we compute qw to leading-order in µ. Assuming �/f
0

= O(1), the slow variation
of a in x, y and z implies that

f
0

�
⇠i⇠j
�
,ij

J(u, ⇠)
⇠ µ . (2.93)

Using (2.92), the three Jacobian terms in (2.89) scale with

J(v + f
0

⇠, ⌘)

J(u, ⇠)
⇠ µ . (2.94)

Thus, neglecting the eight O(µ) terms in (2.89), the wave-averaged PV contribution qw associ-
ated with (2.90) reduces to

qw
��
plane

⇡ J(u, ⇠) , (2.95)

⇡ a ay
m4�

kN4

. (2.96)

This is the conclusion reached by BM in their equation (9.22).
We make the implications of (2.96) concrete by picking the envelope

a
��
plane

= A exp
h
� (x/2`)2 � (y/`)2 � �[z +H/2]/h

�
2

i
. (2.97)

We solve (2.88) for  given (2.97) and (2.96) in a horizontally-periodic and vertically-bounded
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Table 2.1: Pressure, buoyancy, velocity, particle displacements, and qw for mode-one and vertically-propagating
plane wave fields. The symbol ⇡ is used for relationships that hold to leading-order in µ.

vertically-propagating plane wave field mode-one wave field

✓
def

= kx+mz � �t �
def

= kx � �t

a = A e�(x/2`)2�(y/`)2�([z+H/2]/h)2 a = A e�(x/2`)2�(y/`)2

p = a cos ✓ p = a h
1

cos�

u ⇡ a m2�
kN2 cos ✓ u ⇡ a �2

1

kf2
0
h
1

cos�

�f
0

⇠ = v ⇡ a m2f0
kN2 sin ✓ �f

0

⇠ = v ⇡ a 2
1

kf0
h
1

sin�

w ⇡ �a m�
N2 cos ✓ w ⇡ �a �

N2h0
1

sin�

�⇣N2 = b ⇡ �am sin ✓ �⇣N2 = b = a h0
1

cos�

⌘ ⇡ a m2f0
kN2� cos ✓ ⌘ ⇡ a 2

1
kf0�

h
1

cos�

qw ⇡ �
1

2

a2
�
y

m4�
kN4 qw ⇡ a2 2

1

2f3
0
L
⇥
1

2

h2
1

⇤

domain with a spectral method, using Fourier collocation in (x, y) and modal collocation in z
with constant-N vertical modes hn = cos (n⇡z/H). The left panel of figure 2.2 visualizes the
wave field associated with (2.97) and the caption of figure 2.2 lists the physical parameters used
to make figures 2.2 through 2.4.

The mean motion implied by (2.97) and (2.96) is depicted in figures 2.3 and 2.4. The left
panel in figure 2.3 plots uL on a vertical plane in (y, z) which divides the plane wave packet,
revealing the dipolar horizontal structure of uL and its vertical coincidence with the wave
envelope. The top left panel of figure 2.4 plots streamlines of u

L in an xy-plane at z = �H/2,
showing that the plane-wave u

L resembles a vortex dipole in the horizontal. Color-filled contours
indicate the magnitude of u

L and a dotted line outlines the plane wave envelope.
The top right panel of figure 2.4 compares the x-components of the Lagrangian-mean u

L

and Stokes velocity u

S on a line in y through (x, z) = (0,�H/2). The x-component of u

S

defined in (2.49) is

uS

def

= ⇠ ·ru = ⇠ux + ⌘uy + ⇣uz . (2.98)

Integration by parts and use of ux ⇡ �wz implies that ⇠ux+ ⇣uz ⇡ �u⇣�
z
, and

�
u⇣
�
z

⇡ O(µ⇣uz)
follows from the quadrature of u and ⇣ for the packet. Thus

uS

��
plane

⇡ ⌘uy , (2.99)

⇡ a ay
m4f

0

2k2N4

. (2.100)

The top right panel of figure 2.4 indicates that uL � uS at (x, z) = (0,�H/2). This result
can be anticipated with a scaling argument. The scaling of uS is relatively simple: because
⌘ ⇠ f

0

u/�2 and uy ⇠ u/`,

uS

��
plane

⇠ u2f
0

�2`
. (2.101)
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The scaling for uL requires (2.88). Scaling terms on the left of (2.88) gives

4 ⇠  

`2
, and L ⇠ f 2

0

 

(Nh)2
=

✓
f
0

m

Nk

◆
2  

`2
, (2.102)

where we have used both ` = (µk)�1 and h = (µm)�1 to obtain the rightmost term. For
moderately super-inertial waves with (f

0

m/Nk)2 ⇡ O(1), 4 and L scale similarly, and from
(2.88) we obtain  ⇠ `2qw and  /` ⇠ uL ⇠ `qw. The scaling for qw follows more simply: with
ux ⇠ ku and ⇠y ⇠ u/�` we deduce that

qw
��
plane

⇠ u2 k

�`
, and uL

��
plane

⇠ u2 k

�
. (2.103)

Putting the pieces together and remembering that k` = µ�1 yields

uL

uS

��
plane

⇠ �

µf
0

. (2.104)

The plane-wave Lagrangian-mean flow is O(µ�1) larger than the Stokes velocity and the Eule-
rian mean flow is ū ⇡ uL to leading-order in µ.

2.5.2 Mean motion induced by a vertical mode-one internal wave

We contrast the plane-wave-induced mean motion with the flow induced by a domain-filling,
vertical mode-one internal wave. In an ocean of depth H, the vertical modes are the eigenfunc-
tions hn(z) that satisfy

Lhn + 2nhn = 0 with h0n = 0 at z = 0 and z = �H , (2.105)

where �1

n is the Rossby deformation length for mode-n and L is the second-order linear operator
defined in (2.1). When N is constant, the vertical modes are hn = cos(n⇡z/H) with deformation
length �1

n = NH/n⇡f
0

. We consider a mode-one wave pressure field of the form

p
��
mode

= a(x, y, t) h
1

(z) cos(kx � �t) , (2.106)

where k is horizontal wavenumber, � is frequency, and a is a slowly-varying envelope function
with horizontal scale `. We assume 1/k` = µ ⌧ 1 as in (2.91), which permits easy computation
of u, ⇠, and b given in table 2.1 from equations (2.30) through (2.34).

With u and ⇠ we compute the mode-one qw to leading-order in µ. The mode-one vertical
structure implies the terms in (2.89) scale di↵erently than for the plane wave. In particular,

J(u, ⇠)

f
0

�
⇣2
�
zz

⇠ µ . (2.107)

Moreover, because (2.92) and (2.94) apply also for the mode, none of the Jacobian, pseudomomentum-
associated terms contribute to qw at leading-order. Among the remaining terms on the second
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line of (2.89), the assumptions µ ⌧ 1 and �/f
0

= O(1) imply

�
⌘⇣
�
yz�

⇣2
�
zz

⇠ µ and

�
⇠2
�
xx

+
�
⌘2
�
yy�

⇣2
�
zz

⇠ µ2 . (2.108)

Finally, the quadrature of (⇠, ⇣) and (⌘, ⇠) and the fact that µ ⌧ 1 imply

�
⇠⇣
�
xz

+
�
⌘⇠
�
xy�

⇣2
�
zz

⇠ µ2 . (2.109)

The only survivor at leading-order from qw in (2.89) is therefore 1

2

f
0

(⇣2)zz, and the mode-one
qw is

qw
��
mode

⇡ 1

2

f
0

�
⇣2
�
zz

, (2.110)

⇡ �a2
2
1

2f 3

0

L
⇥
1

2

h2
1

⇤
. (2.111)

The final expression in (2.111) is found using ⇣ from table 2.1 along with Lh
1

= �2
1

h
1

. For a
slowly-varying mode-n wave, qw follows by replacing ‘1’ with ‘n’ in (2.111).

We investigate the consequences of (2.111) by choosing the envelope

a
��
mode

= A exp
⇥� (x/2`)2 � (y/`)2

⇤
. (2.112)

As for the vertically-propagating plane wave, we solve (2.88) for  with qw determined by (2.112)
and (2.111) using a spectral method. For the mode-one wave with constant N ,  is mode-two
and thus proportional to cos(2⇡z/H). The wave field associated with (2.112) is visualized in
the right panel of figure 2.2 and the mean motion it induces is illustrated in figures 2.3 and 2.4.

The right panel of figure 2.3 shows the mode-two vertical structure of u

L, and the bottom
left panel of figure 2.4 reveals the horizontally compact and monopolar form of u

L. The bottom
right panel of figure 2.4 compares uL with the Stokes velocity correction uS for the mode-one
wave, where uS is defined in (2.49) and (2.98). Unlike the plane-wave uS in (2.100), in the
mode-one wave field (u⇣)z is larger than ⌘uy by O(µ), and thus

uS

��
mode

⇡ �u⇣�
z
, (2.113)

⇡ �a2
�2

1

2kf 4

0

L
⇥
1

2

h2
1

⇤
. (2.114)

The Stokes velocity correction does not involve spatial derivatives of the envelope a(x, y, t).
The bottom right panel of figure 2.3 indicates that uS � uL at (x, z) = (0,�H/2) for

the mode-one wave: the reverse relationship found for the plane-wave case. This fact can be
deduced with a scaling argument. First, ⇠ ⇠ u/� and ⇣z ⇡ �⇠x implies ⇣ ⇠ Hk⇠, such that

uS

��
mode

⇠ ku2

�
. (2.115)

That the mode uS scales with k rather than 1/` contrasts with the plane-wave case. Next, from
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Figure 2.3: Vertical structure of wave-induced mean flows at x = 0 for vertically-propagating plane wave
(left) and vertical mode-one wave (right). Color-filled contours show uL = � 

y

normalized by its extreme
value, isopycnals are in light gray, and dark gray dashed lines show wave envelopes with contours of 1

2a. The
plane wave packet induces a dipolar uL while the mode-one wave induces a monopolar, mode-two eddy-like uL.
Parameters are listed in the caption of figure 2.2.

Figure 2.4: Horizontal structure of wave-induced mean flows in a top-down xy-view at z = �H/2 associated
with the vertically-propagating plane wave (top) and vertical mode-one wave (bottom). At left, solid gray lines
are streamlines of u

L, color-filled contours show normalized flow magnitude |uL|, and dark gray dashed lines
show wave envelopes with contours of 1

2a. At right uL and uS are plotted versus y on a line at (x, z) = (0, �H/2),
both normalized by the maximum magnitude of uL. The x-axes of the right panels are di↵erent for mode and
plane wave: uL dominates for the plane wave, while uS dominates for the mode-one wave. Parameters are listed
in the caption of figure 2.2.
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(2.88),

4 ⇠  

`2
, but L ⇠ 2

1

 =
1

(µ`)2

⇣
1

k

⌘
2

 . (2.116)

Assuming moderately super-inertial waves for which (
1

/k)2 ⇡ O(1), we conclude that L is
O (µ�2) larger than 4 . Therefore,  ⇠ (µ`)2qw and  /` ⇠ uL ⇠ µ2`qw. Again using the fact
that ⇣ ⇠ Hk⇠, we then find

qw
��
mode

⇠ f
0

✓
ku

�

◆
2

, and uL

��
mode

⇠ µu2 kf
0

�2

. (2.117)

Dropping the parts into place yields

uL

uS

���
mode

⇠ µ f
0

�
, (2.118)

which means the Lagrangian-mean flow is O(µ) smaller than the Stokes velocity field. This
implies further that, to leading-order in µ, the Eulerian-mean flow is

ū ⇡ �uS . (2.119)

This Eulerian-mean ū is an “anti-Stokes flow”. The Lagrangian-mean flow, which is relevant
for potential vorticity advection, is a small residual remaining after the large cancellation in
(2.119) and is O(µ) smaller for the mode-one wave than for the plane wave.

The fact that L is much larger than 4 for the mode-one wave is striking and means
the primary averaged e↵ect of slowly varying, vertical-mode waves is a slight displacement of
isopycnals. The isopycnal displacement is associated with a balanced flow when the wave field
is spatially non-uniform. Equivalent to this physical explanation is the statement that the APV
equation (2.88) can be solved by neglecting 4 and “cancelling the L” between L and qw in
(2.111). We must subtract the barotropic part of h2

1

, since the vertical average of (2.88) implies
 has no barotropic component. This yields

 ⇡ a22
1

4f 3

0

"
1

H

Z
0

�H

h2
1

dz � h2
1

#
. (2.120)

Equation (2.120) is valid for general stratification profiles N(z) and vertical modes hn when the
1’s are replaced by n’s. For slowly-varying vertical mode waves, the streamlines of the wave-
induced mean motion follow the contours of a2, which explains the monopolar mode-induced
motion evident in figure 3.

2.6 Discussion

The wave-QG theory in (2.1) through (2.3), first derived for constant stratification and small-
scale waves by Bühler & McIntyre (1998), is a correction to standard quasi-geostrophy which
accounts for the averaged e↵ects of strong internal waves on balanced planetary flows. The ex-
tension of wave-QG to non-constant stratification is non-trivial and motivates the introduction
of a new material invariant: the available potential vorticity, or APV. APV is on one hand a
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useful computational tool in that it separates waves and balanced flow in Eulerian reference
frames. On the other hand, the conceptual significance of APV is suggested by the immediate
emergence of QGPV from APV as the leading-order term in a low-Rossby-number expansion.

The e↵ect of internal waves on balanced flow is expressed concisely in qw, the wave contribu-
tion to potential vorticity in (2.3). We identify two distinct parts of qw: the vertical component
of ‘pseudovorticity,’ ẑ · r⇥p, and wave-averaged vortex stretching 1

2

f
0

(⇠i⇠j),ij. Both terms
have essentially kinematic origins. As shown in section 10.2.7 of Bühler (2009), pseudovorticity
is a relative vorticity term which appears in wave-averaged circulation integrals over a material
contours in arbitrary oscillatory flow. Equivalently, it arises in the wave-averaged integral of
vorticity over a material surface. Pseudovorticity, therefore can be interpreted fundamentally
as the part of vorticity which is ‘hidden’ by wave averaging: the total vorticity is the sum of
the vorticity of wave-averaged velocity, 4 , minus the pseudovorticity ẑ ·r⇥p.

Wave-averaged vortex stretching, 1

2

f
0

(⇠i⇠j),ij , on the other hand, is a vortex stretching
term that appears in wave-averaged integrals over material volumes in oscillatory and incom-
pressible flow. Thus the non-divergence of exact and unaveraged particle trajectories does not
ensure non-divergence for wave-averaged particle trajectories, a point which is developed clearly
by McIntyre (1988). While small compared to pseudovorticity for nearly-plane waves, wave-
averaged vortex stretching is leading-order for a vertical mode-one wave, and is the only part
of qw that remains in two-dimensional flow in (x, z).

The form of (2.1) through (2.3) suggests that energy transfer occurs generally between
preexisting waves and preexisting mean flow, as demonstrated for near-inertial waves by Xie
& Vanneste (2015). Wave-QG also implies that wave-induced balanced flows exist even in the
absence of potential vorticity, or if q = 0 everywhere and  z = 0 at boundaries. However, this
balanced flow is determined instantaneously and completely by the wave field, is not associated
with energy transfer from waves to balanced flow, and has no independent evolution.

A major missing piece from wave-QG is a description of slow wave evolution which couples
to (2.1) through (2.3). A potential complication is wave-wave nonlinear interaction, which can
lead to wave evolution on the time-scale (✏f

0

)�1: slower than the wave frequency time-scale,
but faster than the mean flow evolution time scale. In this case, careful averaging is required to
separate time-scales and ensure that neither f�1

0

nor (✏f
0

)�1 appear in (2.1) through (2.3). The
complications incurred by nonlinear wave evolution reinforce the assertion that wave evolution
equations are an important component of any consistent, reduced description of flows comprised
of both strong waves and APV. Strong internal waves and balanced flow cannot be considered
independent superposed components of fluid motion: instead, waves and balanced flow coevolve
in an interwoven system with its own unique dynamics.

2.A Quadratic wave properties

In this appendix we obtain some quadratic properties of solutions to the linearized Boussinesq
equations in (2.30) through (2.34). To lighten the notation we suppress the subscript 0 on all
fields throughout this appendix. This means that, within this appendix, u, ⇠, p and b refer to
the zero-order wavy fields u

0

, ⇠

0

, p
0

and b
0

in (2.30) through (2.34). We frequently use the
averaging identity

✓�
˜t = �✓

˜t� , (2.121)
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where � and ✓ are any of the leading-order wave fields. The derivation of these quadratic
properties requires constant use of the definitions ⇠

˜t = u and b = �⇣N2.

2.A.1 The virial equation and the Stokes correction to pressure

The virial equation is obtained by taking the dot product of the wave momentum equations
(2.30) through (2.32) with the particle displacement ⇠. The time-average of the result is

pS = u2 + v2 + f
0

(⇠v � ⌘u) � N2⇣2 , (2.122)

where the leading-order ‘Stokes correction’ (Bühler, 2009; Craik, 1988) to the pressure is

pS
def

= ⇠ ·rp . (2.123)

2.A.2 The ‘gradient virial equation’

Useful identities for rpS are obtained from the spatial gradient of the time-averaged virial
equation (2.122). To maximally simplify this gradient, we need further linear-wave identities.
Consider, for example, the x-derivative of pS,

pSx = ⇠x ·rp+ ⇠ ·rpx . (2.124)

It turns out that both terms on the right are equal to one another, and thus individually equal
to 1

2

pSx. We show this by dotting wave momentum equations (2.30) through (2.32) with ⇠x and
averaging over the fast time. A crucial intermediate result involving the Coriolis terms is

v⇠x � u⌘x = @x
�
v⇠
�
= �@x (u⌘) , (2.125)

= 1

2

@x
�
v⇠ � u⌘

�
. (2.126)

Applying averaging identities and forming exact x-derivatives yields the desired result that
⇠x ·rp = 1

2

pSx, and therefore

1

2

pSx = ⇠x ·rp = ⇠ ·rpx . (2.127)

In similar fashion, dotting the momentum equations (2.30) through (2.32) with ⇠y and ⇠z

produces

1

2

pSy = ⇠y ·rp = ⇠ ·rpy , (2.128)

and

1

2

pSz = ⇠ ·rpz + (N2)z
1

2

⇣2 = ⇠z ·rp � (N2)z
1

2

⇣2 . (2.129)

As before, the second right-side identities in (2.128) and (2.129) follow from taking derivatives
of pS defined in (2.123). Replacing pz by �N2⇣ in (2.129) produces

1

2

pSz = �N2

⇣
⇠ ·r⇣ + ⇤z

1

2

⇣2
⌘
. (2.130)
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The identities in (2.127) through (2.130) are handy expressions for rpS.

2.A.3 The Stokes velocity correction and wave-averaged velocity

Recall that the Stokes velocity correction is

u

S

def

= (⇠ ·r)u . (2.131)

We turn now to the wave velocity u

w defined in (2.47) as

u

w

def

= f�1

0

u ·rv
| {z }

uw

x̂ �f�1

0

u ·ru
| {z }

vw

ŷ + N�2

u ·rb
| {z }

ww

ẑ . (2.132)

Using (2.121) and the leading-order buoyancy equation (2.33), we have

ww = �N�2

⇠ ·rbt , (2.133)

= wS . (2.134)

In contrast to ww, the horizontal components of u

w are not equal to those of u

S. Using the
leading order y-momentum (2.31), the x-component of u

w can be expressed as

uw = �f�1

0

⇠ ·rvt , (2.135)

= uS + f�1

0

⇠ ·rpy ; (2.136)

the y-component is vw = vS � f�1

0

(⇠ ·r) px. Thus, using (2.127) and (2.128), we have:

⇣
uw , vw , ww

⌘
=
⇣
uS , vS , wS

⌘
+ f�1

0

⇣
1

2

pSy ,
1

2

pSx , 0
⌘
. (2.137)

The relationship between the three-dimensional solenoidal vectors u

S and u

w is expressed con-
cisely as u

w = u

S + f�1

0

r⇥�1
2

pS ẑ

�
.

2.B The wave contribution to APV, qw

In this appendix we summarize various expressions for the wave contribution to PV,

qw
def

=
! ·rb

N2

� vSx + uS

y �
✓
f
0

1

2

pSz
N2

◆

z

� f
0

⇤zz
1

2

⇣2 , (2.138)

introduced in (2.66). The subscript 0 on leading-order wave fields is suppressed throughout this
appendix. We use various wave identities from appendix 2.A.

Using the expression for pS in (2.130), we have

✓
f
0

1

2

pSz
N2

◆

z

= �!S � f
0

⇠z ·r⇣ � f
0

⇣
⇤z

1

2

⇣2
⌘

z
, (2.139)

where !S

def

= ⇠ ·r! is the Stokes correction to the vertical vorticity. Note that the Stokes
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correction vertical vorticity, !S, is not equal to the vertical vorticity of the Stokes correction
velocity field, vSx � uS

y . Next, using b = �N2⇣ and ẑ · ! = f
0

⇣z, we find that

� ! ·rb

N2

= ! ·r⇣ + f
0

⇤z

⇣
1

2

⇣2
⌘

z
. (2.140)

With the results in (2.139) and (2.140), and using ! = �vz x̂+uz ŷ+ f
0

⇣z ẑ, we manipulate qw

in (2.138):

qw = !S � vSx + uS

y + f
0

⇠z ·r⇣ � ! ·r⇣ , (2.141)

= ⇠y ·ru � ⇠x ·rv + f
0

⇠z ·r⇣ � ! · r⇣ , (2.142)

= J(u, ⇠) + J(v, ⌘) + f
0

⇠z ·r⇣ . (2.143)

With the expression for qw in (2.143), we are prepared to show the connection between qw

and pseudomomentum. The pseudomomentum defined in Andrews & McIntyre (1978) is given
to leading-order in our case by

pi = �⇠j,i
⇣
uj +

1

2

f
0

( ẑ ⇥ ⇠)j

⌘
, (2.144)

where the subscript ‘, i’ denotes di↵erentiation with respect to the ith coordinate. The wavy
particle displacement defined here via ⇠

˜t = u is equivalent at leading-order to the wavy dis-
placement defined generally in Andrews & McIntyre (1978). The horizontal components of p
are

p
1

= �⇠xu � ⌘xv � 1

2

f
0

�
⇠⌘x � ⌘⇠x

�
, (2.145)

p
2

= �⇠yu � ⌘yv � 1

2

f
0

�
⇠⌘y � ⌘⇠y

�
. (2.146)

In passing from the definition of the pseudomomentum in (2.144) to (2.145) and (2.146) we
have neglected terms ⇣xw and ⇣yw which are smaller by (H/L)2 than the other terms in p

1

and
p
2

. This neglect is consistent with the hydrostatic approximation.
The z-component of the curl of the leading-order pseudomomentum, or ‘pseudovorticity’, is

ẑ ·r⇥p = @x p2 � @yp1 , (2.147)

= J(⇠, u) + J(⌘, v) + f
0

J(⌘, ⇠) . (2.148)

Substituting (2.148) into (2.143) we have

qw = � ẑ ·r⇥p � f
0

h
J(⇠, ⌘) � ⇠z ·r⇣

i
. (2.149)
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Using r · ⇠ = ⇠x + ⌘y + ⇣z = 0, the term in the square brackets in (2.149) can be written as

J(⇠, ⌘) � ⇠z ·r⇣ =
@(⇠, ⌘)

@(x, y)
� ⇠z ·r⇣ , (2.150)

=
@(⇠, ⇣)

@(x, z)
� ⇠y ·r⌘ , (2.151)

=
@(⌘, ⇣)

@(y, z)
� ⇠x ·r⇠ . (2.152)

The average of the three expressions above is

J(⇠, ⌘) � ⇠z ·r⇣ =
1

3

"
@(⇠, ⌘)

@(x, y)
+
@(⇠, ⇣)

@(x, z)
+
@(⌘, ⇣)

@(y, z)

#
� 1

3

⇠i,j⇠j,i . (2.153)

Further, using (r · ⇠)2 = 0, we find

⇠i,j⇠j,i = (⇠i⇠j),ij , (2.154)

= �2

"
@(⇠, ⌘)

@(x, y)
+
@(⇠, ⇣)

@(x, z)
+
@(⌘, ⇣)

@(y, z)

#
, (2.155)

which implies
J(⇠, ⌘) � ⇠z ·r⇣ = �1

2

(⇠i⇠j),ij . (2.156)

We can therefore write qw as

qw = 1

2

f
0

(⇠i⇠j),ij � ẑ ·r⇥p . (2.157)

This expression for qw agrees with the GLM-derived results in BM and Holmes-Cerfon et al.
(2011), except that the first term in (2.157) is missing from BM due to their assumption of slow
spatial variation in the wave field. Note that the derivation in BM and Holmes-Cerfon et al.
(2011) assumes constant buoyancy frequency N ; evidently, allowing for general N(z) does not
change the result for qw.
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Chapter 3

A three-component model for the
coupled evolution of near-inertial
waves, quasi-geostrophic flow, and the
near-inertial second harmonic

3.1 Introduction

Near-inertial waves (NIWs) are inertia-gravity waves in rotating, stratified fluids with frequen-
cies near the local inertial frequency, f

0

. In the oceans of Earth, an almost-universal strong
density stratification means NIWs have small aspect ratios, large vertical shears, and the low-
est of internal wave frequencies. These characteristics partly explain why oceanic NIWs are
generated by diverse processes like fluctuating winds and flow over topography, contain roughly
half of the total internal wave kinetic energy, and are a main contributor to diapycnal mixing
(Ferrari & Wunsch, 2009).

Slow propagation and weak dispersion expose NIWs to strong interaction with balanced
quasi-geostrophic flows. A basic introduction to NIW propagation through non-uniform bal-
anced flows is given by the WKB-based ray theories of Mooers (1975) and Kunze (1985), who
showed that near-inertial energy is attracted to regions of negative balanced vorticity and ex-
pelled from regions of positive vorticity. A more general theory valid both for ray-like NIW
propagation as well as NIW scattering by small-scale balanced flow was developed by Young
& Ben Jelloul (1997, YBJ hereafter). YBJ linearized the Boussinesq equations around a pre-
scribed background flow and developed a two-time asymptotic expansion to reveal the slow
evolution of near-inertial fields. The resulting YBJ NIW equation, which is a linearized version
of equation (3.8) below, describes the weakly dispersive propagation of �-plane NIWs though
advecting and refracting balanced flows of arbitrary structure.

The YBJ NIW equation successfully describes many aspects of near-inertial propagation
through realistic balanced flows (Klein & Llewellyn Smith 2001; Klein, Llewellyn Smith &
Lapeyre 2004; Danioux, Klein & Rivière 2008), but ignores nonlinear, finite-amplitude NIW
dynamics and their corresponding feedback onto the balanced flow. In pursuit of a richer theory
describing the coupled NIW-flow evolution, Xie & Vanneste (2015, XV hereafter) derived a Gen-
eralized Lagrangian Mean model which joins the YBJ NIW equation to the quasi-geostrophic
equations. Like Bühler & McIntyre (1998), Wagner & Young (2015) and chapter 2, and as in

39
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equation (3.7) below, in the XV model an NIW-induced balanced flow takes part in advecting
quasi-geostrophic potential vorticity (QGPV) and thus in QGPV evolution. The XV model
indicates that the near-inertial limit is a peculiarly tractable example of Bühler & McIntyre’s
non-dissipative wave-mean interaction.

3.1.1 The 2f0 harmonic and motivation for a three-component model

Both YBJ and XV lack a conspicuous aspect of NIW evolution observed in the kinetic energy
frequency spectra of the Ocean Storms Experiment (D’Asaro et al., 1995), the observations of
Niwa & Hibiya (1999), and in the simulations of NIW-flow interaction by Danioux et al. (2008):
the generation of internal waves with 2f

0

frequency. While the 2f
0

waves have little horizon-
tal kinetic energy relative to the NIWs, they can dominate the pressure field and contribute
appreciably to vertical velocity and isopycnal displacement. Remarkably, 2f

0

generation and
subsequent horizontal radiation can remove energy from spatially compact regions of NIW-flow
interaction, as discussed below and illustrated in figure 3.1. A primary motivation for this paper
is the derivation of a more complete set of equations that contains the essential elements of
YBJ and XV while including 2f

0

waves. This derivation yields a model with three components:
NIW velocity, QG potential vorticity, and the amplitude of 2f

0

pressure.
To motivate the three-component model, we consider an initial value problem in the Boussi-

nesq equations in which a surface-concentrated NIW interacts with a balanced barotropic jet
in two-dimensions (x, z). We use a constant inertial frequency f

0

= 10�4 s�1 and buoyancy
frequency N = 2⇥10�3 s�1 associated with a stable background buoyancy profile. The velocity
field is u = ux̂ + v ŷ + w ẑ and the dynamic buoyancy perturbation from background is b, so
that available potential energy density is b2/2N2. The initial v is a barotropic jet in geostrophic
and hydrostatic balance flowing along the axis of y, while the initial u is a surface-concentrated,
horizontally-uniform, and unbalanced flow which develops into a NIW. The balanced jet has a
Gaussian profile,

v(x, z, 0) = V
0

+ V
1

exp
��x2/2L2

�
, (3.1)

where V
0

is defined so that v(x, z, 0) has zero horizontal average and thus no unbalanced com-
ponent. The initial u is horizontally uniform and concentrated in a layer of depth h:

u(x, z, 0) = U
0

exp
��z2/2h2

�
. (3.2)

The initial buoyancy b and vertical velocity w are zero. We solve this initial value problem in
the Boussinesq equations using the spectral model of Winters, MacKinnon & Mills (2004) with
1536 Fourier modes in x and 768 sine/cosine modes in z.

If the jet in (3.1) were not present, the initial condition in u would develop into a perpetual,
spatially uniform, non-propagating purely inertial wave. Instead, refraction by the imposed
jet injects small horizontal scales of size ⇠L into the NIW field, induces near-inertial vertical
propagation, and catalyzes radiation of low-mode 2f

0

internal waves. The development of this
process is illustrated in figure 3.1, which shows snapshots of potential energy density at t = 5, 10,
20, 40, and 80 inertial periods. The kinetic energy density is indicated by 10 overlain contours
between 0.01 and 0.1 m2/s2. Throughout the simulation, kinetic energy remains localized in
the surface layer and in the near-field of the barotropic jet; bulges in kinetic energy appearing
at t = 20 through 80 inertial periods reveal the progress of vertical NIW propagation and the
modification of the balanced flow by the NIWs. The kinetic-energy bulges are on the anti-
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Figure 3.1: The numerical solution to a two-dimensional Boussinesq initial value problem involving the interac-
tion of a barotropic jet with a surface-concentrated near-inertial wave (NIW). Shading shows potential energy
density b2/2N2 and contours show kinetic energy density at 10 levels between 0.01 and 0.1 m2 s�2 at t = 5
through t = 80 inertial periods. A horizontal line on the t = 5, 10, and 20 snapshots shows the wavelength of a
vertical mode-one 2f0-frequency internal wave. The slanting lines on the t = 40 and t = 80 snapshots indicate
the characteristic propagation angles of NIWs with the indicated frequencies. The initial v and u are given in
(3.1) and (3.2), where V1 = 0.4 m s�1, L = 40 km, U = 0.8 m s�1, and h = 100 m. Only the central 800km of a
1200 km computational domain with 150 km thick sponge layers on either side is shown.
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cyclonic flank of the jet and show that NIW energy is refractively focused into the region of
negative vorticity (Balmforth & Young, 1999; Lee & Niiler, 1998).

The vertical propagation of NIW kinetic energy is attended by an evolving potential energy
field. Its most conspicuous aspect is a signal that extends the full domain depth and radiates
horizontally from the region of jet-NIW interaction. In early stages, the potential energy signal
has vertical mode-one structure. A horizontal line on the panel at t = 20 inertial periods
indicates the horizontal wavelength of a mode-one, 2f

0

frequency internal wave. Remarkably,
while this 2f

0

signal is generated by nonlinear NIW self-interaction in a small region, it rapidly
radiates to fill a much larger volume without significant NIW activity (Danioux et al. 2008).

In addition to the low- and intermediate-mode 2f
0

signal, narrow beams of potential energy
radiate downwards and outwards from the center of the domain. These beams are NIWs, which
propagate at the characteristic angles indicated by slanting lines on the snapshots at t = 40
and t = 80 inertial periods. These beams of near-inertial energy are produced by a scattering
interaction between the surface-concentrated NIW and the jet. The rightward radiating beams
are NIWs escaping the region of negative jet vorticity.

The two-dimensional NIW-jet interaction is thus characterized by at least three distinct
phenomena: trapping of near-inertial energy in regions of negative balanced vorticity, beam-
like radiation of near-inertial energy, and emission of 2f

0

waves. We use a multiple space-
and time-scale expansion of the Boussinesq equations to construct a three-component model
describing all of these processes.

3.1.2 Summary of the three-component model

In the three-component model, the horizontal velocity is

u+ iv
def

= e�if0t LA+ (�@y + i@x) + · · · . (3.3)

where A(x, y, z, t) is the NIW envelope and  (x, y, z, t) is the quasi-geostrophic streamfunction.
The di↵erential operator L in (3.3) is defined below in (3.7) and the · · · on the right of (3.3)
stand for additional contributions to horizontal velocity: NIW harmonics, Stokes corrections,
and ageostrophic flow. The pressure field is

p = f
0

 +
if

0

2

h
e�if0t(@x � i@y)A+ e�2if0t2B

i
+ cc + · · · , (3.4)

where B(x, y, z, t) is the 2f
0

wave envelope, ‘cc’ stands for ‘complex conjugate’, and the · · ·
indicate unimportant high-order corrections. The vertical velocity w is

w = � f 2

0

2N2

h
e�if0t(@x � i@y)Az + e�2if0t4Bz

i
+ cc . (3.5)

The 2f
0

contribution in B features prominently in the vertical velocity field, despite its small
contribution to horizontal velocity.

The system consists of three equations: a wave-averaged quasi-geostrophic potential vor-
ticity equation, the NIW equation, and a ‘2f

0

equation’ governing the evolution of 2f
0

waves.
The wave-averaged potential vorticity equation is

qt + J( , q) = 0 , (3.6)
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where the potential vorticity is

q =
⇣
@2x + @2y
| {z }

def
=4

+ @z
f 2

0

N2

@z
| {z }

def
=L

⌘
 + �y +

i

2f
0

J (LA⇤,LA) +
1

4f
0

4��LA��2 . (3.7)

In (3.6) and (3.7) the operator J(a, b) = axby � aybx is the Jacobian, the inertial frequency
is f = f

0

+ �y, and N(z) is the depth-dependent buoyancy frequency associated with strong
background stratification. The two rightmost terms in (3.7) are quadratic NIW contributions
to the wave-averaged potential vorticity. Note that the 2f

0

waves are assumed too weak to
contribute appreciably to potential vorticity. The evolution of the NIW field is described by a
generalization of the YBJ equation,

LAt +
i

2

f
0

4A+ J( ,LA) + iLA
�
1

2

4 + �y
�
+ 1

2

LA⇤�@x + i@y
�
2

B = 0 . (3.8)

Equation (3.8) accounts for NIW dispersion and group propagation, horizontal advection by
balanced flows, refraction by balanced flows and non-uniform planetary vorticity, and nonlinear
NIW-2f

0

interaction. The NIW-2f
0

interaction term on the right end of (3.8) is identical to
the term introduced by Young, Tsang, and Balmforth (2008) into the YBJ equation to analyze
near-inertial parametric subharmonic instability (PSI); in that work, the NIW-2f

0

interaction
was implicated in the production of very small NIW vertical scales. The evolution of the 2f

0

amplitude B is obtained from

(4 + 13L)Bt + 4if
0

�4 � 3L
�
B = �3

2

�
@x � i@y

�
2

�
LA
�
2

. (3.9)

Equation (3.9) describes dispersion and group propagation of 2f
0

waves, forced 2f
0

oscillations,
and energy transfer from NIWs into the 2f

0

field.
The three-component model, comprised of equations (3.6) through (3.9), describes the cou-

pled evolution of near-inertial waves, quasi-geostrophic flow, and near-2f
0

internal waves. Like
the XV system, the three-component model conserves two integral quantities: ‘wave action’,
and ‘coupled energy’. Wave action is a sum of NIW kinetic energy and the total energy of
freely-propagating near-2f

0

waves. Coupled energy is the sum of total balanced energy, near-
inertial potential energy, a NIW-� interaction term, and terms associated with the NIW-2f

0

interaction.
A striking implication of both the XV and three-component model is that NIWs can extract

energy from balanced flow. This follows from the separation of wave action and coupled energy
conservation, which requires that an increase in NIW potential energy during NIW-flow interac-
tion comes at the expense of balanced energy. Balanced flow thus loses energy when interacting
with NIWs that consist almost entirely of kinetic energy, and NIW-QG interaction forms a link
between large-scale balanced energy, the energy contained in the internal wave field, and wave
breaking and diapycnal mixing. XV refer to this wave-mean interaction as ‘stimulated loss-
of-balance’ to distinguish it from spontaneous loss-of-balance (Vanneste, 2013), emphasizing
that it requires externally-forced waves to ‘stimulate’ further production of wave energy at the
expense of balanced energy. Unlike spontaneous wave generation, stimulated wave generation
is a potentially significant energy sink for nearly-balanced flows with small Rossby numbers.

The chapter is organized as follows: in chapter 3.2, we non-dimensionalize the Boussinesq
equations and define the multiple time and multiple vertical scales required to meet solvabil-
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ity conditions in the asymptotic derivation. In chapter 3.3, we expand the Boussinesq equa-
tions in wave amplitude, deriving the NIW equation as well as the 2f

0

equation governing
the evolution of the 2f

0

harmonic. In chapter 3.4, we apply the wave-averaged contribution
to quasi-geostrophic potential vorticity found by Wagner & Young (2015) to the near-inertial
case. In chapter 3.5 we heuristically revise the formal theory derived in sections 3.3 and 3.4
to arrive at the implementable model of equations (3.6) through (3.9). In chapter 3.6, we de-
rive two conserved integral quantities from equations (3.6) through (3.9). In chapter 3.7, we
compare numerical solutions of a two-dimensional initial value problem in both Boussinesq and
three-component models, and in section 3.8 we assess the solutions’ physical implications. We
conclude with a discussion of the model’s significance and implications in chapter 3.9.

3.2 Near-inertial non-dimensionalization

We set the asymptotic reduction in motion by non-dimensionalizing the Boussinesq equations
(1.7) through (1.11). We choose a spatial scaling that isolates NIWs at leading-order and a
velocity scaling that ensures the back-rotated velocity and the QGPV share the same evolu-
tionary time scale. Specifically, this requires that NIW dispersion acts on the same time scale
as advection and refraction by the balanced flow. We use a single horizontal length scale,
L, and denote the scale of the near-inertial horizontal velocity with Ũ . The NIW ‘amplitude
parameter’

✏
def

=
Ũ

f
0

L
, (3.10)

is crucial: ✏ ⌧ 1 ensures nonlinear terms are small and the NIW field is governed by linear
dynamics to leading-order.

The amplitude and importance of nonlinearity in the balanced flow is measured by the
Rossby number. We assume the balanced flow is weak relative to the near-inertial waves, and
that Ū = ✏Ũ , where Ū is the characteristic velocity of the balanced flow. Under this scaling
assumption the Rossby number is

Ro
def

=
Ū

f
0

L
= ✏2 . (3.11)

The NIW amplitude parameter and Rossby number have superficial similarity but di↵erent
physical interpretations. The NIW amplitude can be interpreted as the ratio between the length
scale L and the radius of particle orbits in an inertial circle, Ũ/f

0

. The Rossby number, on the
other hand, is the ratio of the rotation time scale 1/f

0

and advective time scale L/Ū = (✏2f
0

)�1.
The NIW envelope and the balanced flow co-evolve on the slow time scale (✏2f

0

)�1.
We denote the vertical scale of the near-inertial waves by H̃ and we use Ũ , L, and H̃ to

non-dimensionalize the horizontal and vertical velocities,

(u, v) = Ũ (ǔ, v̌) , w =
H̃Ũ

L
w̌ , (3.12)

where non-dimensional variables are distinguished by ˇ . Introducing f
0

, the local Coriolis or
inertial frequency, and N

0

, the characteristic magnitude of N(z), we non-dimensionalize the
buoyancy field with

b =
⇣
H̃N2

0

Ũ/f
0

L
⌘
b̌ . (3.13)
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We adopt a geostrophic scaling for the pressure such that

p = f
0

LŪp̌ = ✏f
0

LŨp̌ . (3.14)

The inertial frequency is scaled so that

f̌ = 1 + ✏2�̌y̌ , (3.15)

where (x, y) = L(x̌, y̌) and

�̌ =
�L2

Ū
. (3.16)

Finally, we define an aspect ratio

↵
def

= ✏
N

0

f
0

. (3.17)

By assuming ↵ = O(1), we imply that f
0

/N
0

= O(✏) and justify the hydrostatic approximation
in the vertical momentum equation at all relevant orders in the perturbation theory.

3.2.1 Multiple scales: time and space

To describe both internal waves and slowly evolving balanced flow, we use the two-time method
with a ‘fast’ time t̃ = f

0

t, and a ‘slow’ time t̄ = ✏2f
0

t. Thus time-derivatives are mapped to

@t 7! f
0

⇣
@
˜t + ✏2@

¯t

⌘
. (3.18)

We use an Eulerian time-average denoted with an overbar and defined as

�̄(x, t̄)
def

=
1

T

Z t+T/2

t�T/2

�(x, t0) dt0 , where
1

f
0

⌧ T ⌧ L

Ū
, (3.19)

to separate fast and slow flow components. Any field � can be decomposed into

� = �̄+ �̃ , (3.20)

where �̄ is the slowly evolving time-mean part and �̃ is the wavy part with �̃ = 0.
A multiple-vertical-scale expansion in the vertical is motivated by the disparity in aspect

ratio between NIWs, and both observed 2f
0

scales as well as standard quasi-geostrophic flow.
Denoting the vertical scale of the NIWs by H̃, the internal-wave dispersion relation implies that
internal waves are near-inertial when the Burger number of the wave is small, or when

 
N

0

H̃

f
0

L

!
2

⌧ 1 . (3.21)

On the other hand, the standard quasi-geostrophic equations assume that the Burger number
of the balanced flow is order unity. We use this requirement to define the vertical scale of the
balanced flow, H̄, as

H̄
def

=
f
0

L

N
0

. (3.22)
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We make the scaling assumption that
H̃ = ✏H̄ . (3.23)

This prescription for H̃ unifies the slow NIW dispersion time scale with the balanced-flow
advection time scale. To capture both vertical scales in the expansion we split the vertical
coordinate into a fast component, z̃, and a slow component, z̄. Under this two-scale splitting,
vertical derivatives become

@z 7! H̃�1

�
@z̃ + ✏ @z̄

�
. (3.24)

The vertical-scale splitting requires the introduction of a vertical average, which we define

�̂ =
1

H 0

Z z̃+H0/2

z̃�H0/2

� dz̃0 , where H̃ ⌧ H 0 ⌧ H̄ . (3.25)

The increase in complexity incurred by the multiple space-scale expansion is justified by a
systematic explanation of the prominence and impact of the 2f

0

harmonic on NIW evolution.

3.2.2 Complexifed non-dimensionalized equations

The derivation is greatly simplified by defining the complex horizontal coordinate and velocity
field,

s
def

= x+ iy , and U def

= u+ iv . (3.26)

Spatial derivatives are expressed in terms of s and s⇤ via

@s =
1

2

(@x � i@y) , @s⇤ =
1

2

(@x + i@y) . (3.27)

Notice that 4 = 4@s@s⇤ , and that

ux + vy = Us + U⇤
s⇤ and vx � uy = iU⇤

s⇤ � iUs . (3.28)

Using the scaling assumptions outlined above, and dropping decorations on non-dimensional
variables, the complexified, non-dimensional Boussinesq equations become

U
˜t + iU = �✏

⇣
u ·rU + 2 ps⇤

⌘
� ✏2

⇣
U
¯t + w Uz̄ + i�y U

⌘
, (3.29)

pz̃ = ✏
⇣
b � pz̄

⌘
� ✏2↵�2

h
w

˜t + ✏ (u ·rw) + ✏2(wwz̄ + w
¯t)
i
, (3.30)

b
˜t + wN2 = �✏u ·rb � ✏2

⇣
b
¯t + wbz̄

⌘
, (3.31)

Us + U⇤
s⇤ + wz̃ = �✏wz̄ . (3.32)

The bracketed terms in (3.30) are included for completeness, but never appear in the theory
that follows. In terms of complex velocity the advection operators in (3.29) and (3.31) are

u ·r = U@s + U⇤@s⇤ + w@z̃ . (3.33)

The system in (3.29) through (3.32) is the basis for our asymptotic derivation.
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3.3 The NIW equation

The NIW equation is derived by developing a perturbation expansion of (3.29) through (3.32)
for ✏ ⌧ 1. We begin by expanding u, b, and p each in a series in ✏. For example, the complex
velocity U is expanded into

U = U
0

+ ✏ U
1

+ ✏2 U
2

+ · · · . (3.34)

We develop equations (3.29) through (3.32) order-by-order in ✏. For clarity, we express our
results in dimensional variables, though the non-dimensional forms are indispensable for dis-
tinguishing each order in the development.

3.3.1 Leading order: near-inertial waves

The leading-order terms in (3.29) through (3.32) are

U
0

˜t + if
0

U
0

= 0 , (3.35)

p
0z̃ = 0 , (3.36)

b
0

˜t + w
0

N2 = 0 , (3.37)

U
0s + U⇤

0s⇤ + w
0z̃ = 0 . (3.38)

We write the solution to the horizontal momentum equation (3.35) in terms of an NIW envelope
M or A,

U
0

= e�if0˜t Mz̃ = e�if0˜t L̃A , (3.39)

where L̃ is a second-order di↵erential operator

L̃
def

= @z̃

✓
f 2

0

N2

@z̃

◆
. (3.40)

Both A(x, y, z̃, z̄, t̄) and M = (f 2

0

/N2)Az̃ prove useful for confronting the algebra that ensues.
The representation in (3.39) ensures the leading-order horizontal velocity is inertial over short
times; small deviations in wave field frequency from f

0

are captured by the dependence of M
or A on the slow time t̄. The construction in (3.39) also implies that the vertical average of the
NIW horizontal velocity is zero at this order.

With the representation in (3.39), we can integrate the continuity equation (3.38) over the
fast vertical coordinate z̃ to yield

w
0

= �e�if0˜tMs � eif0
˜tM⇤

s⇤ + ŵ
0

, (3.41)

where the z̃-independent function of integration ŵ
0

(x, y, z̄, t̃, t̄) is necessary to ensure solvability
of the perturbation expansion at next order. If ŵ

0

is not included in (3.41) then the O(✏)
velocity field cannot satisfy continuity and the boundary conditions. At O(✏) in equations
(3.29) through (3.32), we find that ŵ

0

oscillates on the fast time with frequency 2f
0

and is
forced nonlinearly by NIW horizontal self-advection.

The leading-order buoyancy b
0

follows from integration of the buoyancy equation (3.37)
using w

0

in (3.41),

b
0

= if
0

⇣
e�if0˜tAz̃s � eif0

˜tA⇤
z̃s⇤

⌘
+ b̂

0

, (3.42)
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where as in (3.41) we include the function of integration b̂
0

(x, y, z̄, t̃, t̄). The vertical momentum
equation (3.36) implies that the leading-order pressure p

0

does not depend on the fast vertical
scale z̃, or that

p
0

= p̂
0

. (3.43)

The leading-order pressure p
0

is eventually determined by (3.61) and (3.62) below and oscillates
on a fast time-scale with frequency 2f

0

. An important feature eventually revealed by this
expansion is that some 2f

0

-harmonic fields with slow vertical scale, namely ŵ
0

, b̂
0

and p̂
0

, appear
at leading order. The 2f

0

component of the horizontal velocity U , on the other hand, does not
appear until O(✏) in the development. The magnitude of these 2f

0

fields is a consequence of
voluntary scaling decisions and is not obvious prior to the expansion.

3.3.2 First order: wave-averaged geostrophic balance and 2f0 har-
monic

The O(✏) terms in equations (3.29) through (3.32) are

U
1

˜t + if
0

U
1

= �2p
0s⇤ � u

0

·rU
0

, (3.44)

p
1z̃ = b

0

� p
0z̄ , (3.45)

b
1

˜t + w
1

N2 = �u

0

·rb
0

, (3.46)

U
1s + U⇤

1s⇤ + w
1z̃ = �w

0z̄ . (3.47)

These equations describe wave-averaged geostrophic balance and the nonlinearly forced 2f
0

harmonic.

Wave-averaged geostrophic balance

The time-average of (3.44) through (3.47) yields the wave-averaged geostrophic balance condi-
tions. These balance conditions are similar to those in chapter 2 and Wagner & Young (2015)
except that the restriction to NIWs means there is no Stokes pressure contribution. We show
this explicitly by noting that on the right hand side of (3.44),

u

0

·rU
0

= J
0

+ e�2if0˜tJ
2

+ e�if0˜tŵ
0

Mz̃z̃ , (3.48)

where J
0

and J
2

are Jacobians defined by

J
0

def

=
@(M⇤,Mz̃)

@(z̃, s⇤)
, and J

2

def

=
@(M,Mz̃)

@(z̃, s)
. (3.49)

Next, we use the standard definitions of the horizontal and vertical Stokes drift, US and wS,

US

def

= ⇠

0

·rU
0

, and wS

def

= ⇠

0

·rw
0

, (3.50)

where ⇠

0

= ⇠
0

x̂+ ⌘
0

ŷ+ ⇣
0

ẑ is the wave particle displacement, defined via ⇠

0

˜t = u

0

and ⇠̄

0

= 0.
A direct calculation shows that

if
0

US = u

0

·rU
0

= J
0

. (3.51)
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A similar calculation for the vertical Stokes drift wS shows that

if
0

wS =
if

0

N2

u

0

·rb
0

= K⇤
0

� K
0

, (3.52)

where K
0

is the Jacobian

K
0

def

=
@ (M⇤,Ms)

@ (z̃, s⇤)
. (3.53)

The identity J
0s + J ⇤

0s⇤ + K⇤
0z � K

0z = 0 implies that the three-dimensional Stokes velocity in
(3.51) and (3.52) is non-divergent.

Defining the quasi-geostrophic streamfunction as

 
def

=
p̄
0

f
0

, (3.54)

we use the expressions for the Stokes velocities in (3.51) and (3.52) to write the time average
of (3.44) and (3.46) as

Ū
1

+ US = 2i s⇤ , (3.55)

w̄
1

+ wS = 0 . (3.56)

Equation (3.55) is the wave-averaged geostrophic balance condition for quasi-geostrophic flow
evolution in a field of strong NIWs. This balance condition lacks the Stokes pressure correction
term that appears in the more general balance condition expressed by equation (4.38) in Wagner
& Young (2015). From the leading-order vertical momentum equations (3.36), the pressure p

0

,
and therefore  , does not depend on the fast vertical coordinate z̃.

The 2f
0

harmonic

Using the two-time decomposition in (3.20), we write the wavy part of the first-order equations
(3.44), (3.45), and (3.47),

Ũ
1

˜t + if
0

Ũ
1

+ 2p̃
0s⇤ = �e�2if0˜tJ

2

� e�if0˜t ŵ
0

Mz̃z̃ (3.57)

p̃
1z̃ = b̃

0

� p̃
0z̄ , (3.58)

b̂
0

˜t + ŵ
0

N2 = 0 , (3.59)

Ũ
1s + Ũ⇤

1s⇤ + w̃
1z̃ = �w̃

0z̄ , (3.60)

where with (3.59) we include the vertically-averaged, leading-order buoyancy equation. It is
(3.59), rather than the wavy part of (3.46), which describes the part of the 2f

0

buoyancy field
with large vertical scale. Note that the final term on the right of equation (3.57) is not resonant
because ŵ

0

oscillates with 2f
0

frequency.
The system (3.57) through (3.60), along with the time-fluctuating part of (3.46), provides

a complete description of the 2f
0

harmonic of the NIW field. Importantly, part of this 2f
0

-
harmonic response does not depend on the fast vertical coordinate z̃. To isolate the slowly
vertically-varying part of the 2f

0

harmonic we average (3.57) through (3.60) over z̃ and wrangle
the resulting system into a single equation. We leave the details to Appendix 3.A and note the
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final result. Using the notation

p̃
0

= if
0

h
e�2if0˜tB(x, y, z̄, t̄) � e2if0

˜tB⇤(x, y, z̄, t̄)
i
, (3.61)

we find that B solves

if
0

�4 � 3L̄
�
B = �3

2

@2s
dM2

z . (3.62)

The operator L̄ is a second-order di↵erential operator analogous to L̃, but defined in terms of
the slow vertical scale z̄,

L̄
def

= @z̄
f 2

0

N2

@z̄ . (3.63)

The ‘2f
0

equation’ in (3.62) describes forced 2f
0

oscillations with a much larger vertical scale
than the near-inertial fields. Because of this vertical-scale discrepancy, the vertical velocity of
the 2f

0

-harmonic appears alongside the NIW vertical velocity at leading-order in (3.41). As it
stands, however, equation (3.62) cannot describe freely-propagating 2f

0

waves and thus cannot
describe the waves which produced the prominent potential energy signal in figure 3.1. These
waves roughly satisfy the 2f

0

dispersion relation and thus have the property 4B ⇡ 3LB, in
which case (3.62) cannot be solved. To address this issue, we propose a heuristic modification
to (3.62) in section 3.5.

Continuing with the derivation of the NIW evolution equation, we use the expression for p̃
0

in equation (3.61) to integrate (3.57) for Ũ
1

. The full U
1

field is

U
1

= 2i s⇤ + if�1

0

J
0

+ e�2if0˜t
�
2Bs⇤ � if�1

0

J
2

�
+ 2

3

e2if0
˜tB⇤

s⇤ + · · · (3.64)

where · · · indicates terms proportional to e�3if0˜t and eif0˜t. Finally, we find p
1

�p̂
1

by subtracting
the vertical average from (3.58), using (3.42), and integrating to find

p
1

� p̂
1

= if
0

⇣
e�if0˜tAs � eif0

˜tA⇤
s⇤

⌘
. (3.65)

We now have U
1

, ŵ
0

, and p
1

, and are ready to proceed to the second-order system.

3.3.3 Second order: an NIW amplitude evolution equation

The O(✏2) terms in the horizontal momentum equation (3.29) are

U
2

˜t + if
0

U
2

= �u

0

·rU
1

� u

1

·rU
0

� U
0

¯t � i�y U
0

� 2p
1s⇤ � w

0

U
0z̄ , (3.66)

Here we finally apply the solvability condition arising from the introduction of multiple time
scales. The solvability condition prevents the disordering of terms that would result from secular
growth in U

2

: we isolate resonant forcing terms on the right of (3.66) and set them collectively
to zero. The amplitude equation yielded by this procedure governs the dependence of the NIW
envelope A on the slow time t̄. We note that the vertical average of (3.66) has no resonant
terms.

We construct the amplitude equation piece by piece, starting at the far-right end of (3.66)
and proceeding to the left. The final term w

0

U
0z̄ in (3.66) has no parts proportional to e�if0˜t

and so does not contribute to the amplitude equation. The next three terms from the left side
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of (3.66) are

U
0

¯t + i�y U
0

+ 2@s⇤(p1 � p̂
1

) = e�if0˜t
⇣
L̃A

¯t + i�y L̃A+ 2if
0

Ass⇤

⌘
+NRT , (3.67)

where NRT stands for ‘non-resonant terms’. Next in line is

(u
1

·r)U
0

= e�if0˜t

"
2i
@( ,Mz̃)

@(s⇤, s)
� USMz̃s � US⇤Mz̃s⇤ � wSMz̃z̃

#
+NRT . (3.68)

Note that to find (3.68) we need only consider the time-mean velocity ū

1

, since U
0

is proportional
to e�if0˜t. The first term on the right of (3.66), involving the zero-order advection of the first-
order velocity, is the most complicated. Carefully compiling the terms, we find

(u
0

·r)U
1

= e�if0˜t
⇣
Mz̃U1s � MsU1z̃

⌘
+ eif0

˜t
⇣
M⇤

z̃ U
1s⇤ � M⇤

s⇤U1z̃

⌘
+ ŵ

0

U
1z̃ , (3.69)

= e�if0˜t

"
@(M, Ū

1

)

@(z̃, s)
+

i

f
0

@(J
2

,M⇤)

@(z̃, s⇤)
+ 2M⇤

z̃Bs⇤s⇤

#
+NRT . (3.70)

Adding (3.68) to (3.70) yields

(u
1

·r)U
0

+ (u
0

·r)U
1

= e�if0˜t

"
2i
@( ,Mz̃)

@(s⇤, s)
+ 2i ss⇤Mz̃ + 2M⇤

z̃Bs⇤s⇤

#
+NRT . (3.71)

The absence of terms cubic in M is a remarkable aspect of (3.71): all sixteen cubic-M terms in
(3.68) and (3.70) conspire in collective cancellation. This simplification was previously noted
by Falkovich et al. (1994) and Zeitlin et al. (2003), and is the reason why no cubic terms appear
in XV.

It is thus notable that our expansion identifies a surviving ‘honorary’ cubic term, propor-
tional to M⇤

z̃Bs⇤s⇤ , in (3.71). This new term results from the interaction of NIWs with both
forced and freely-propagating 2f

0

waves. The requirement for 2f
0

fields arises when the first-
order continuity equation (3.60) is averaged over the small NIW vertical scale: if the vertical
average of U

1s + U⇤
1s⇤ is non-zero, for example, then continuity can only be satisfied if U

1

is
permitted its own independent evolution. This solvability issue is addressed by introducing the
2f

0

fields ŵ
0

, b̂
0

and p̂
0

at leading order in (3.41) and (3.42). This is the non-obvious step that
ultimately produces the new term in (3.71).

The amplitude equation is then obtained from the sum of (3.67) and (3.71). In Cartesian
coordinates and in terms of A, the amplitude equation becomes

L̃A
¯t +

if
0

2
4A+ J

�
 , L̃A

�
+ i L̃A

�
1

2

4 + �y
�
+

1

2
L̃A⇤�@x + i@y

�
2

B = 0 . (3.72)

The amplitude equation (3.72) is the YBJ equation, except for the extra term on the right
associated with the 2f

0

harmonic. This extra term is identical to that found by Young et al.
(2008) in their analysis of energy transfer from 2f

0

motions to NIWs by parametric subharmonic
instability (PSI).
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3.4 The NIW-averaged potential vorticity

Wave-averaged quasi-geostrophic flow is governed by a wave-averaged potential vorticity equa-
tion (Bühler & McIntyre, 1998; Wagner & Young, 2015),

q
¯t + J ( , q) = 0 , (3.73)

where  is defined through the balance condition (3.55) and q is the wave-averaged available
potential vorticity. Wagner & Young (2015) give a number of expressions for q. Here, we use

q
def

= (4 + L) + �y + J (u
0

, ⇠
0

) + J (v
0

, ⌘
0

) + f
0

J (⇠
0

, ⌘
0

) + 1

2

⇣
⇠
0i⇠0j

⌘

,ij| {z }
def
= qw

. (3.74)

In (3.74) we define the wave contribution to available potential vorticity, qw, in terms of the
leading-order wave particle displacement ⇠

0

= ⇠
0

x̂ + ⌘
0

ŷ + ⇣
0

ẑ defined through ⇠

0

˜t = u

0

.
In the present multiple-scale theory,  and q are both time-averaged and vertically-averaged

quantities. Consistency then demands that qw in (3.74) be vertically averaged as well. With
the leading-order wave expressions (3.39) and (3.41) and using M , a bit of algebra leads to

qw = � 1

f0
(M⇤

ss⇤Mz̃z̃ � 2Mz̃s⇤M
⇤
z̃s +Mss⇤M

⇤
z̃z̃) . (3.75)

This is the expression for qw found by XV.
We then take the vertical average of qw, which yields a number of representations via

integration by parts in z̃, such as

cqw = � 1

f0

⇣
M⇤

ss⇤Mz̃z̃

V

� 2Mz̃s⇤M⇤
z̃s

V

+Mss⇤M⇤
z̃z̃

V⌘
, (3.76)

= i

2f0
J (M⇤

z̃ ,Mz̃)
V

+ 1

4f0
4 [|Mz̃|2 . (3.77)

We take the second form, in (3.77), which is the form needed to furnish the three-component
model in (3.6) through (3.9) with a coupled wave-mean energy conservation law.

3.5 Remodeling

We regard the formally-derived model comprised of (3.72), (3.74), (3.77) and (3.62) as a first
draft, which we heuristically revise to obtain the simpler and well-posed system in (3.6) through
(3.9). This remodeling addresses two concerns with the multiple-scale formulation. First, the
multiple vertical scales and vertical averages in (3.77) and (3.62) burden interpretation and
computations with the arbitrary definition of a vertical average. Second, the 2f

0

equation in
(3.62) cannot be solved when the NIW field and its 2f

0

harmonic interact resonantly, which
occurs when the nonlinear forcing on the right side of (3.62) has spectral components in the
null space of the operator 4 � 3L on the left.

To address the first concern, we reconsolidate vertical scales and eliminate vertical averaging
from equations (3.77) and (3.62). While averaging-removal admits spurious small vertical scales
into  and B, these parts of  and B contain little energy due to the smoothing or ‘self-
averaging’ properties of the Helmholtzian inversions that determine  and B through (3.74)
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and (3.62). In particular, both intuition and the results of figure 3.5 indicate that most of
the energy transferred to B lies close to the 2f

0

dispersion relation, which by definition has
large-vertical scale relative to the NIW source on the right of (3.62) and (3.80).

After consolidation of scales and dismissal of vertical averages the potential vorticity is given
in terms of  and wave-averaged properties as

q =
�4 + L

�
 +

i

2f
0

J (LA⇤,LA) +
1

4f
0

4��LA��2 , (3.78)

and the NIW equation is

LAt +
i

2

f
0

4A+ J( ,LA) + iLA
�
1

2

4 + �y
�
+ 1

2

LA⇤�@x + i@y
�
2

B = 0 . (3.79)

Above L = @z f 2

0

/N2 @z is the operator originally defined in (3.7) in terms of the single vertical
scale z. The evolution of q in (3.78) is governed by the potential vorticity equation in (3.6).

The second issue regarding the non-invertibility of 4 � 3L and the description of freely-
propagating 2f

0

waves is addressed by applying @t 7! �2if
0

+ @
¯t to (3.57) through (3.60) prior

to deriving (3.62). This procedure installs a time-derivative in the 2f
0

evolution equation (3.62)
and fixes its resonance problem. We leave the details for appendix 3.A and report the result,
which is the modified 2f

0

equation:

(4 + 13L)Bt + 4if
0

�4 � 3L
�
B = �3

2

�
@x � i@y

�
2

�
LA
�
2

. (3.80)

Non-dimensionalizing (3.80) in the manner of section 3.2 reveals that (4 + 13L)Bt is ✏2

smaller than the rest of equation (3.80). The small term (4 + 13L)Bt becomes important
under conditions of near-resonance when 4if

0

(4�3L)B is relatively small. The fact that terms
of di↵erent orders in ✏ appear in (3.80) reflects the fact that its derivation implicitly relies
on a variant on the ‘reconsititution’ methods discussed by Roberts (1985). Reconstitution
successfully improves many asymptotic expansions including the Navier-Stokes equation as it
describes the deviation of fluid molecules from thermodynamic equilibrium. Here, reconstitution
of 2f

0

dynamics by addition of the high-order term (4 + 13L)Bt empowers (3.80) to describe
freely-propagating 2f

0

waves, and crucially tempers the generation of 2f
0

waves by the source
term on the right.

3.6 Conservation laws

Like XV, we find that the wave-averaged system (3.6) through (3.9) conserves two integral
quantities, which we call “wave action” and “coupled energy”.

3.6.1 Wave action

The first conservation law follows from the wave equations (3.8) and (3.9). We multiply (3.8)
with 1

2

LA⇤, add the complex conjugate, and integrate over the domain. Using the 2f
0

equation
(3.80), and a liberal application of integration by parts, we find

d

dt

Z
1

2

��LA
��2 + 1

6

��rB
��2 + 13f2

0
6N2

��Bz

��2 dV = 0 . (3.81)
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The appearance of the B-terms in this first conservation law is a consequence of the time
derivative in the 2f

0

equation (3.80) and corresponds to the total energy in the freely propagating
part of the near-2f

0

wave field. The first conservation law implies that generation of freely-
propagating 2f

0

waves solely extracts near-inertial kinetic energy.

3.6.2 Coupled energy

The second conserved quantity is a wave-mean coupled energy. We derive the associated con-
servation law by multiplying the potential vorticity equation (3.73) with  and integrating over
the domain. The Jacobian term  J( , q) can be written as an exact derivative and integrates
to zero. Applying integration by parts, we are left with

dE 
dt

=

Z
 qwt dV , (3.82)

where qw is the wave potential vorticity defined in (3.74) and

E 
def

=

Z
1

2

|r |2 + 1

2

f2
0

N2 
2

z dV (3.83)

is the balanced quasi-geostrophic energy. Next we multiply (3.8) by iLA⇤
t/2f0, add the complex

conjugate, and integrate over the domain to obtain

dEf

dt
= �

Z
 qwt dV � i

2f0

Z
B⇤@t@

2

s

�
LA
�
2 � B@t@

2

s⇤
�
LA⇤�2 dV , (3.84)

where

Ef
def

=

Z
f2
0

4N2

��rAz

��2 + �y
2f0

��LA
��2 dV (3.85)

is the sum of NIW potential energy and an action-like term associated with the �-e↵ect. The
first term on the right of (3.84) corresponds to the term on the right of (3.82) and will cancel
when these equations are added. Substitution of the 2f

0

equation (3.9) and its complex conju-
gate into the second integral on the right of (3.84) followed by persistent integration by parts
produces

dE
2f

dt
= i

2f0

Z
B⇤@t@

2

s

�
LA
�
2 � B @t@

2

s⇤
�
LA⇤�2 dV , (3.86)

where

E
2f

def

=

Z
i

12f0

h
B (4 + 13L)B⇤

t � B⇤(4 + 13L)Bt

i
� 1

3

|rB|2 + f2
0

N2 |Bz|2 dV, (3.87)

=

Z
i

8f0

h
B⇤ (@x�i@y)

2(LA)2 � B (@x+i@y)
2(LA⇤)2

i
+ 1

3

��rB
��2 � f2

0
N2

��Bz

��2 dV. (3.88)

An additional substitution of equation (3.9) and its complex conjugate transforms equation
(3.87) into (3.88). The conservation of coupled energy emerges from the combination of (3.82),
(3.84), and (3.86),

d

dt

⇣
E + Ef + E

2f

⌘
= 0 . (3.89)
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The conservation law in (3.89) is identical to XV’s except for addition of the E
2f term. Equation

(3.89) is the analog of a conservation law found by Danioux et al. (2015) that relates the
evolution of NIW potential energy to advection and refraction by steady geostrophic flows.

A thought experiment due to XV illuminates an important implication of (3.89). Envision
the rapid and stormy deposition of a horizontally-extensive, surface-concentrated current in a
region of geostrophic turbulence. When the storm passes, the unbalanced current first develops
into surface-concentrated NIW which is almost horizontally-uniform, and therefore has little
potential energy so that Ef ⇡ 0. Next, NIW refraction and advection by the geostrophic flow
generates near-inertial horizontal scales and potential energy, catalyzes the production of 2f

0

internal waves, and leads to vertical NIW propagation. Because wave action in (3.81) and
coupled energy in (3.89) are distinct and independent conservation laws, total NIW and 2f

0

wave energy increases in this process at the sole expense of energy in the geostrophic flow. The
role of E

2f in (3.89) is unfortunately obscure in this thought experiment, though we note it is
✏2 smaller than the other terms in (3.89) and that the diagnosis of (3.89) presented in figure
3.7 below shows its e↵ect is minor in some cases.

3.7 Comparison of three-component model and Boussi-
nesq equations

To build confidence in the heuristic and asymptotic approximations used to develop the three-
component model, we compare numerical solutions of a two-dimensional initial value problem
in the three-component model and the Boussinesq equations. The initial problem is similar
to that shown in figure 3.1, in which a surface-concentrated NIW interacts with a barotropic
balanced velocity field. In addition to solutions intended for direct comparison, we compute
solutions to a two-component model without 2f

0

dynamics, and a three-component model with
the PSI-like part of NIW-2f

0

interaction removed. The physical implications of the numerical
solutions are discussed in section 3.8.

3.7.1 The initial value problem

The initial value problem involves the interaction of a surface-concentrated NIW with random,
barotropic balanced flow. The two-dimensional physical domain is bounded by rigid lids in z
with height H = 4 km and is periodic in x with width L = 800 km. The stratification is uniform
with buoyancy frequency N = 2 ⇥ 10�3 s�1 and the inertial frequency is f

0

= 10�4 s�1 = N/20
with � = 0. As for the problem considered in section 3.1, the NIW initial condition is

LA(x, z, 0) = u(x, z, 0) = U
0

exp
��z2/2h2

�
, (3.90)

with h = 100 meters. We consider initial NIW surface velocities of U
0

= 0.4, 0.2 and 0.1 m/s.
The initial, balanced v-velocity is

 x(x, z, 0) = v(x, z, 0) = V
0

14X

n=4

✓
k
4

kn

◆
2

cos (knx+ �n) , (3.91)

where kn
def

= 2⇡n/L and the �n are random phases between 0 and 2⇡ for each component of
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Table 3.1: Parameters and models for numerical simulations reported in chapter 3.7 and 3.8. A resolution of
‘1⇥’ is nx ⇥ nz = 1024 ⇥ 2048 and ‘2⇥’ is twice that. In all runs  q

x

= v(t = 0) is given by (3.91) with V0 = 0.1
m/s.

U
0

(m/s) Resolution Model(s) Notes

0.4 1⇥, 2⇥ Boussinesq and three-component model

0.4 1⇥ Two-component model with B 7! 0 ‘no 2f
0

’

0.2 1⇥ Boussinesq and three-component model

0.2 1⇥ Two-component model with B 7! 0 ‘no 2f
0

’

0.2 1⇥ Three-component model with BxxLA⇤ 7! 0 ‘no PSI’

0.1 1⇥ Boussinesq and three-component model

the geostrophic flow. We choose V
0

= 0.1 m/s for all simulations. This produces a maximum
velocity of max(v) ⇡ 0.2 m/s, a maximum Rossby number of max(vx)/f0 ⇡ 0.1 and root-mean-
square Rossby number of rms(vx)/f0 ⇡ 0.05. The balanced flow and its associated vorticity
field are plotted at the top of figures 3.2 through 3.4.

The numerical solutions we report are listed in table 3.1. Note that we choose simulation
parameters both for ease of numerical integration and for consistency with oceanic scenarios. In
particular, the chosen balanced-flow magnitude in V

0

leads to ‘reasonable’ and even somewhat
slow NIW vertical propagation rates of tens of inertial periods. However, these choices violate
assumptions made in chapter 3.2 to justify the asymptotic derivation of the three-component
model. For example, the expansion assumes that Ū/Ũ = H̃/H̄ = ✏ ⌧ 1, while in the simula-
tions H̃/H̄ = h/(⇡�1H) = 0.08 is small and Ū/Ũ = U

0

/V
0

= [0.25, 0.5, 1] is relatively large. A
fair question is whether the model is valid in the proposed regime, or whether the simulations
provide a good test of model validity.

We o↵er two points to settle this concern. First, the model must be approximately valid
for a wide range of parameter choices to be useful for interpreting and understanding real
oceanic scenarios. With a weaker mean flow that better satisfies the asymptotic assumptions,
the results are qualitatively similar and the test of model fidelity is milder. Our choices thus
test the model’s usefulness in a relevant and more interesting regime where failure is possible.
Second and importantly, the relative magnitude of waves and balanced flow is less important in
our two-dimensional scenario where, as we discuss, APV does not evolve. The simulations we
present are thus interesting primarily as a test of the nonlinear NIW-2f interaction, and cannot
test the validity of the dynamic NIW-QG interaction. That test requires three-dimensional
simulations.

3.7.2 Methods

In two dimensions, the APV equation (3.6) reduces to qt = 0 and implies that q is constant.
Because of this it is useful to decompose the balanced streamfunction into  (x, z, t) =  q(x, z)+
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 w(x, z, t), where

�
@2x + L

�
 q = q , and

�
@2x + L

�
 w = � 1

4f
0

@2x|LA|2 . (3.92)

Like q,  q is constant in time and determined by the initial condition. Because LA is initially
uniform, we have  q =  (t = 0) and thus  q

xx = vx(t = 0). With this decomposition the
two-dimensional three-component system becomes

LAt +
i

2

f
0

Axx +
i

2

�
 q
xx +  w

xx

�
LA+ 1

2

BxxLA
⇤ = �D(LA) , (3.93)

�
@2x + 13L

�
Bt + 4if

0

�
@2x � 3L

�
B + 3

2

@2x (LA)
2 = �D(LB) , (3.94)

where D,

D
def

= ⌫

"✓
�x

�z

◆
2

@2x + @2z

#
8

, (3.95)

is a linear hyperdi↵usion operator added for numerical stability with hyperviscosity ⌫ and ratio
of x to z physical resolution �x/�z. We set ⌫ = 106 m16/s for all simulations reported here, and
find the fractional energy lost to dissipation is negligible.

Equations (3.92) through (3.94) are solved with a pseudospectral method by decomposing
A and B into the constant-N vertical modes cos(n⇡z/H) in z, and Fourier modes in x. Fast
Fourier transforms are used for vertical and horizontal modal projections. Time integration
is performed with the exponential time di↵erencing method described by Cox & Matthews
(2002), Kassam & Trefethen (2005), and Grooms & Julien (2011). Use of the exponential time
di↵erencing method is crucial due to the sti↵ness of equation (3.94).

The nonhydrostatic Boussinesq equations are solved with the model of Winters et al. (2004),
which employs a pseudospectral method with Fourier horizontal modes, sine vertical modes for
(w, b), cosine vertical modes for (u, v), and an integrating factor method with a 3rd-order
Adams-Bashforth scheme for time-stepping.

We use the same order of hyperdi↵usion for three-component and Boussinesq models. Non-
exhaustive trial and error indicates our three-component code is stable with time-steps at
least 10 times larger than those demanded by Winters’ Boussinesq model. The simulations
reported here use 1024 Fourier modes in x and 2048 vertical cosine modes in z. To test
dependency on resolution, we ran simulations with double the resolution for U

0

= 0.4 m/s in
both Boussinesq and three-component models. The results shown here are almost identical for
the two resolutions.

3.7.3 Points of comparison

We use horizontal velocity, vertical velocity, and domain-integrated vertical kinetic energy to
compare Boussinesq and three-component models. Because v is initially balanced, the unbal-
anced part of v is approximately isolated by

�v(x, z, t) = v(x, z, t) � v(x, z, 0) . (3.96)
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On the other hand, u is unbalanced because py = 0. We thus define the unbalanced horizontal
‘wave speed’ as

wave speed
def

=
p
u2 + �v2 . (3.97)

When diagnosed from the Boussinesq simulations, the horizontal wave speed in (3.97) includes
NIW and 2f

0

components as well as a much smaller wave-induced mean component. In figure
3.2, we compare the wave speed from the Boussinesq solution with |Ũ | ⇡ | U

0

+ Ũ
1

| diagnosed
from the three-component solution, where U

0

= e�if0tLA and Ũ
1

is the wavy part of (3.64). The
comparison is made at t = 10, 40, and 80 inertial periods. The initial NIW magnitude in figure
3.2 is U

0

= 0.4 m/s and the initial, balanced, barotropic v and local Rossby number vx/f0 are
plotted in upper left and right panels.

The wave speed shown in figure 3.2 indicates good agreement between the three-component
model and Boussinesq equations. A close inspection of the fields is required to discern di↵erences
that arise between the two models at late times. It is our consistent experience that the wave
speed field is well-estimated by the three-component model for the two-dimensional initial value
problems examined here; we therefore focus the following discussion on the more interesting
and worst-case comparison of vertical velocity.

Figure 3.2: Comparison of wave speed in numerical solutions to the three-component and Boussinesq models.
The top two panels show the x-dependence of the initial balanced velocity v (left) and balanced vorticity
normalized by f0, v

x

/f0 (right). The lower three panels show wave speed defined in (3.97) at t = 10, 40, and
80 inertial periods in the Boussinesq model (left panels) and the three-component model (right panels). The
initial NIW surface velocity is U0 = 0.4 m/s.
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Figure 3.3: Comparison of vertical velocity in numerical solutions to the Boussinesq and three-component
models. The top two panels show the x-dependence of initial v (left) and v

x

/f0 (right). The lower three panels
show vertical velocity w at t = 10, 40, and 80 inertial periods for Boussinesq (left panels) and three-component
model (right panels). The initial NIW surface velocity is U0 = 0.4 m/s.

The vertical velocities in Boussinesq and three-component solutions are compared in figures
3.3 and 3.4 for initial NIW magnitudes U

0

= 0.4 and 0.2 m/s. Vertical velocity is plotted from
top to bottom at t = 10, 40, and 80 inertial periods. For both cases, agreement is good at t = 10
inertial periods but degrades progressively thereafter. A conspicuous aspect of the Boussinesq
solution absent from the three-component solution are features with small horizontal scales and
steep characteristic angles. These features are especially prominent in figure 3.3 for the most
nonlinear case with U

0

= 0.4 m/s at t = 40 and 80 inertial periods.
We dissect this failure of the three-component model in figure 3.5, which compares vertical

kinetic energy (VKE) spectra between three-component and Boussinesq models for U
0

= 0.4
m/s at t = 10 and 40 inertial periods. The five lines indicate internal wave frequencies based on
the linear dispersion relation; proceeding clockwise from the vertical axes these frequencies are
1.01f

0

, 1.08f
0

, 2f
0

, 3f
0

, and 4f
0

, with the dashed line corresponding to 2f
0

. The dynamics are
clear: in the Boussinesq simulations, substantial VKE leaks into higher harmonic frequencies
3f

0

and 4f
0

. By t = 40 inertial periods, the fraction of VKE contained in frequencies greater
than 2.8f

0

is 49%. This transfer of VKE to higher harmonics decreases with U
0

: for U
0

= 0.2
and 0.1 m/s, the fraction is 10% and just over 1%, respectively, at t = 40 inertial periods.

The e↵ect of the energy transfer to NIW harmonics on total VKE is demonstrated in figure
3.6, which shows the evolution of total VKE,

R
w2/2 dx dz, for (a) U

0

= 0.4 m/s and (b) U
0

= 0.2
m/s. Four models are considered: Boussinesq (solid lines), three-component model (dashed
lines), a two-component model which neglects 2f

0

(dash-dotted lines), and a modification of the
three-component model with PSI suppressed by removing BxxLA⇤ from the NIW equation (3.93)
(dotted line, figure 3.6(b) only). The three-component model underestimates the amplitude of
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Figure 3.4: Like figure 3.3 but with initial NIW surface velocity U0 = 0.2 m/s. The agreement between
Boussinesq and three-component models is better than for U0 = 0.4 m/s.

VKE, having 54% of the Boussinesq solution at t = 40 inertial periods and 43% of the total at
t = 80 inertial periods. The ‘extra’ Boussinesq VKE is thus uncannily similar to that contained
in frequencies greater than 2.8f

0

. In other words, the extra Boussinesq VKE results from the
transfer of horizontal NIW kinetic energy into high NIW harmonics not accounted for in the
three-component model. This transfer is strongest in the most nonlinear case with U

0

= 0.4
m/s.

For the case U
0

= 0.2 m/s the three-component model correctly estimates the amplitude,
but not the phase of VKE. Unsurprisingly, given the impact of NIW-harmonic interactions on
VKE, the two-component solutions with B 7! 0 and thus no 2f

0

cannot capture the evolution
of VKE for either U

0

= 0.4 or 0.2 m/s. In figure 3.6(b), the suppression of PSI leads to an
unrealistic accumulation of VKE in 2f

0

motions starting at around t = 20 inertial periods.
This indicates that the transfer of energy from 2f

0

back to NIWs must be accounted for to
accurately capture VKE evolution.

3.7.4 Summary

The comparison presented in this section suggests that the three-component model well-describes
NIW evolution and nonlinear NIW-2f

0

interaction. That the three-component model describes
NIW evolution in the cases shown here is not too surprising, since it is likely driven by a lin-
earized YBJ-type flow-induced refraction. The success of the three-component in describing
NIW-2f

0

interaction is more surprising and vindicates the heuristic derivation of 2f
0

dynam-
ics. On the other hand, the model grossly underestimates vertical velocity magnitude when
the NIWs are strong, which follows from the neglect of NIW harmonics higher than 2f

0

. We
stress that this two-dimensional comparison cannot test whether the three-component model
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Figure 3.5: Snapshots of VKE spectral components, |w̆|2, where w̆ denotes the Fourier and vertical mode
transform of w, for U0 = 0.4 m/s at t = 10 and 40 inertial periods. The spectral components are normalized
by total Boussinesq VKE and horizontal modes include energy from both positive and negative horizontal
wavenumbers. The five lines show the linear dispersion relation for five internal wave frequencies; proceeding
clockwise from the vertical axes these frequencies are 1.01f0, 1.08f0, 2f0, 3f0, and 4f0, with the dashed line
corresponding to 2f0. By t = 40 inertial periods, 49% of the Boussinesq VKE is in frequencies higher than
2.8f0.
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Figure 3.6: Evolution of total VKE
R

w2/2 dx dz for (a) U0 = 0.4 m/s and (b) U0 = 0.2 m/s. Results are
diagnosed from the Boussinesq model (solid lines), three-component model (dashed lines), a ‘no 2f0’ two-
component model with B 7! 0 (dash-dotted lines), and a ‘no PSI’ three-component model with the term
B

xx

LA⇤ removed from the NIW equation (3.93) (dotted line in panel (b) only). Black colors are used for (a)
U0 = 0.4 m/s and blue colors for (b) U0 = 0.2 m/s here and in figures 3.7 and 3.9.

correctly captures the impact of NIWs on balanced flow evolution.

3.8 Energy transfer and production of small vertical scales

In this section we continue to explore the initial value problem of section 3.7 by looking at the
energy transfer between the three flow components and the surprising role played by 2f

0

in the
evolution of the smallest vertical scales.

3.8.1 Energy transfer between flow components

The two conserved quantities in the three-component model are wave action and coupled energy
defined in (3.81) and (3.89) and plotted in figure 3.7(a) and (b). Figure 3.7(a) illustrates the
transfer between NIW kinetic energy and the total energy of the 2f

0

field, defined respectively
as

Af =

Z
1

2

|LA|2 dV and A
2f =

Z
1

6

��Bx

��2 + 13f2
0

6N2

��Bz

��2 dV . (3.98)

Figure 3.7(a) shows the components of wave action change �Af (t)
def

= Af (t) � A (0) and A
2f .

Figure 3.7(a) also shows the very small change in total wave action �A = �Af + A
2f due to

hyper-dissipation with dotted lines. All curves are normalized by initial wave action A (0),
which is equal to the kinetic energy in the near-inertial initial condition. Three cases corre-
sponding to di↵erent initial amplitude of the NIW are shown: U

0

= 0.1, 0.2, and 0.4 m/s in
red, blue, and black. The action transferred from Af to A

2f increases initially to a maximum
value and thereafter decays to a constant asymptotic value as t ! 1. Although the short-
term maximum transfer increases with the initial NIW amplitude U

0

, the fraction as t ! 1
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Figure 3.7: The evolution of (a) wave action and (b) coupled energy in the three-component system with initial
NIW velocity in (3.90) and U0 = 0.4, 0.2 and 0.1 m/s, and initial balanced velocity in (3.91) with V0 = 0.1 m/s,
as shown in figures 3.2 through 3.4.

is independent of U
0

and indicates that less than 1% of the near-inertial action is ultimately
transferred to the 2f

0

field.

Figure 3.7(b) shows the evolution of �E (t)
def

= E (t) � E (0), Ef , and E
2f following the

definitions in (3.83), (3.85), and (3.87), respectively. All energies are normalized by the initial
near-inertial kinetic energy A (0), thus revealing an uncanny correspondence between cases:
the energy transferred from balanced flow to NIWs is a constant fraction of the initial NIW
kinetic energy, Af (0).

3.8.2 2f0 motions are a stepping stone to small vertical scales

The evolution of A
2f in figure 3.7(a) is unspectacular and suggests NIW-2f

0

interaction is not
important because at most a mere 3% of the initial NIW kinetic energy is transferred to 2f

0

when U
0

= 0.4 m/s. Yet the possibility for a PSI-type energy transfer from 2f
0

to NIW hints
that the inclusion of 2f

0

and nonlinear NIW-2f
0

interaction may be necessary to capture the
production of small NIW vertical scales.

We isolate the e↵ect of this process by computing a ‘no 2f
0

’ solution of (3.92) and (3.93). In
this solution we set B 7! 0, thus removing 2f

0

waves and the 2f
0

-mediated transfer of energy.
Figure 3.8 gives a qualitative impression of the results, where wave speed (top panels) and wave
shear magnitude (bottom panels) are plotted for three model solutions with U

0

= 0.4 m/s:
Boussinesq (left), three-component model (middle), and the two-component ‘no 2f

0

’ solution of
equations (3.92) and (3.93) with B 7! 0 (right). Both Boussinesq and three-component results
have small scales in the vertical velocity which are lacking when 2f

0

is removed, and thus must
be created by nonlinear NIW-2f

0

interaction. Without 2f
0

the magnitude of vertical shear is
also underestimated near (x, z) = (�0.1, 40) km. At the same time, the overall flow structure
agrees between the three models.

A more quantitative estimate of small vertical scales is provided by the metric Ri†(t), which



64 Waves and flow

Figure 3.8: Comparison of velocity magnitude and shear magnitude between the Boussinesq equations, the
three-component model, and a two-component model with B 7! 0 and thus no 2f0 waves. The snapshots are
taken at t = 80 inertial periods and comprise a portion of the full domain shown in figure 3.2.

measures the smallest Richardson numbers and thus the potential for wave breaking and mixing
were such processes resolved. Ri† is defined as the average of the smallest 0.1% of Richardson
numbers:

Ri†(t)
def

= mean
⇥
smallest 0.1% of Ri values

⇤
, where Ri

def

=
N2 + bz
u2

z + �v2z
. (3.99)

The evolution of Ri† normalized by its initial value is shown in figure 3.9 for the cases
U
0

= 0.4 and 0.2 m/s. Results are compared between Boussinesq, three-component models,
and two-component models. The comparison reveals that small values of Ri† and thus small
vertical scales are produced by at least two distinct physical mechanisms. Ri† first decreases
to a minimum value between t = 15 and 20 inertial periods and rises gradually thereafter. The
agreement between all five cases means that Ri† is controlled by refraction of the NIW field by
balanced flow during this stage.

At around t = 40 inertial periods the results diverge and Ri† is smaller for U
0

= 0.4 m/s
in both Boussinesq and three-component models. It is conspicuous that in the two-component
model with U

0

= 0.4 m/s, Ri† is overestimated and stays close to the more linear U
0

= 0.2 m/s
results. At this stage, the smallness of Ri† and thus small NIW vertical scales in Boussinesq
and three-component models must be controlled by nonlinear NIW-2f

0

interaction.
Strikingly and despite that they contain little instantaneous energy, 2f

0

motions provide a
crucial stepping stone through which NIW energy is transferred to small vertical scales. The
surprisingly accurate description of this process by the three-component model suggests it is
controlled by the interaction of relatively large-vertical-scale 2f

0

motions with small-scale NIWs,
which figures 3.2 and 3.3 show are well-captured by the three-component model.
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Figure 3.9: The evolution of Ri† defined in (3.99) and normalized by its initial value for the cases U0 = 0.4
m/s (black) and U0 = 0.2 m/s (blue or gray) and in three models: Boussinesq (solid lines), three-component
model (dashed lines), and the two-component model with B 7! 0 and thus no 2f0 (dashed-dotted lines). The
inset shows the numerical values of Ri† approaching the critical value Ri = 1/4 for the case U0 = 0.4 m/s in
Boussinesq and three-component models. Ri† is a measure of the smallest vertical scales in the flow, whose
evolution cannot be captured without 2f0.

3.9 Discussion

We have developed a three-component model for the coupled evolution of near-inertial waves
(NIWs), quasi-geostrophic (QG) flow, and internal waves with frequency near 2f

0

. The three-
component model adds 2f

0

dynamics to the two-component, NIW-QG model derived by Xie
& Vanneste (2015), and thereby describes the prominent 2f

0

vertical velocities and production
of small NIW vertical scales that numerical solutions of the Boussinesq equations show are
important features of the coupled evolution of NIWs and balanced flow.

A striking prediction of both the three-component model and XV’s two-component model
is that forced oceanic NIWs extract energy from large-scale balanced flows. Because it re-
quires externally-forced internal waves, XV call this mechanism ‘stimulated loss-of-balance’,
distinguishing it from the spontaneous loss-of-balance that occurs without external stimulus.
Stimulated loss-of-balance acts even in small Rossby number flows, and our numerical solutions
suggest that energy transfer to NIWs increases with the strength of the externally-forced waves.
The significance of this process in real flows is uncertain.

The three-component model connects the 2f
0

generation mechanism identified by Danioux
& Klein (2008) with the YBJ-based near-inertial PSI mechanism of Young et al. (2008). The
form of the NIW-2f

0

coupling implies a two-step cycle for NIW energy: first, advection and
refraction by balanced flow catalyzes transfer of NIW energy to 2f

0

waves. These newly-
produced 2f

0

waves have large, often depth-spanning vertical scales and propagate rapidly in
the horizontal. Second, a PSI-like interaction transfers energy from 2f

0

waves back to the NIW
field at very small vertical scales. This two-step process provides a path from the large scales
of NIW forcing to the small scales of wave breaking and mixing. Advection and refraction of
NIWs by non-uniform QG flows leads to relatively small NIW horizontal scales and thus plays a
catalytic role in activating this path. Interestingly, the rapid horizontal and vertical propagation
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of the nascent 2f
0

waves can excite small-scale NIWs in regions remote from the initial NIW
forcing. Two-dimensional numerical solutions of both three-component and Boussinesq models
give tentative confirmation of this mechanism.

The numerical comparison with the Boussinesq equations shows that strengths of the three-
component model include its description of NIW refraction by balanced flow, and prediction of
both the phase and amplitude of growing 2f

0

waves at short times. A weakness of the three-
component model is the underestimation of vertical velocity and vertical kinetic energy under
increasingly nonlinear conditions due to its neglect of 3f

0

- and 4f
0

-frequency NIW harmonics.
Despite this shortcoming, the three-component model captures with surprising accuracy the
long-time evolution of the very smallest NIW vertical scales that result from nonlinear NIW-
2f

0

interaction.
The numerical comparison primarily tests the accuracy of NIW-2f

0

dynamics in the three-
component model in a regime where refraction by APV-induced balanced flow controls the
large-scale NIW evolution. The magnitude of APV and the APV-induced flow means our
comparison is not well-suited to isolate the existence and impact of balanced flow induced by
quadratic NIW terms in (3.7). In addition, because APV cannot evolve in our two-dimensional
scenario, the comparison cannot explore dynamic NIW-QG interaction. A three-dimensional
comparison of three-component and Boussinesq dynamics is required to define the regimes of
validity of the three-component model in more realistic scenarios and to unravel the e↵ects of
NIWs and their wave-induced balanced flow on the evolution of oceanic QG motion.

The applicability of the three-component model to a particular part of the ocean can be
assessed using kinetic-energy frequency spectra derived from long-term mooring observations of
horizontal velocity. Where non-wave flows of NIW-scale have small Rossby number, the three-
component model well approximates the dynamics of any motion with Eulerian frequencies
near f

0

. In flows with relative vorticities near or greater than f
0

, or under conditions of
active wave breaking, the relevance of the three-component model is uncertain. The ubiquitous
appearance of a spectral peak at f

0

combined with the belief that large, NIW-scale vortical
flows are predominantly balanced (Ferrari & Wunsch, 2009) hints at, but does not confirm,
the potentially broad applicability of the three-component model. Such confirmation requires
further observations, like the di�cult simultaneous observation of large-scale balanced vorticity
and storm-driven NIW evolution. The applicability of the three-component model to real flows
is of consequence, since predicting the climatic evolution of diapycnal mixing likely requires a
firm understanding of near-inertial wave physics — a link between large and small scales of
oceanic motion.

3.A The 2f0 equation

In this appendix, we outline the asymptotic and heuristic steps that lead to the 2f
0

equation
in (3.9) and (3.80).
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3.A.1 2f0-frequency forcing at first order

The vertically-averaged, time-fluctuating part of the first-order Boussinesq system in (3.57)
through (3.60) is

c̃U
1

˜t + if
0

c̃U
1

+ 2p̃
0s⇤ = �e�2if0˜t bJ

2

, (3.100)

p̃
0z̄˜t + c̃w0

N2 = 0 , (3.101)

c̃U
1s +

c̃U⇤
1 s⇤ + c̃w0z̄ = 0 , (3.102)

where the wavy part of the leading-order pressure p̃
0

does not depend on the fast scale z̃.
The system above describes hydrostatic internal waves of general aspect ratio driven by the
2f

0

-forcing on the right of (3.100).
A bit of wrangling with equations (3.100) through (3.102) leads to a single equation for the

wavy part of the leading-order pressure field:

@
˜t

h
@2
˜t L̄ + f 2

0

⇣
4 + L̄

⌘ i
p̃
0

= 3if 3

0

⇣
e�2if0˜t bJ

2s � e2if0
˜t bJ ⇤

2s⇤

⌘
. (3.103)

Equation (3.103) is the hydrostatic internal wave equation forced at frequency 2f
0

. Writing p̃
0

as
p̃
0

= if
0

⇣
e�2if0˜tB(x, y, z̄, t̄) � e2if0

˜tB⇤(x, y, z̄, t̄)
⌘
, (3.104)

and noting that (3.49) implies
bJ
2

= @sdM2

z̃ , (3.105)

we find that B satisfies
if

0

�4 � 3L̄
�
B = �3

2

@2s
dM2

z̃ . (3.106)

3.A.2 Resonant and near-resonant NIW-2f0 interaction

Equation (3.106) describes forced oscillations with frequency 2f
0

. It cannot describe the reso-
nant and near-resonant generation and free propagation of 2f

0

internal waves. Near-resonant
generation can be understood by projecting (3.106) onto vertical modes hn(z) which satisfy

Lhn + 2nhn = 0 , and h0n = 0 at top and bottom, (3.107)

where the eigenvalue n is the Rossby deformation wavenumber of mode n. If we look for
solutions of the form B ⇠ eikx+i`y, we find that (3.106) cannot be solved when

k2 + `2 = 32n . (3.108)

These combinations, which are circular slices of (k, `)-space at each vertical mode, are the
wavenumber combinations that satisfy the linear internal wave dispersion relation at frequency
2f

0

. Freely-propagating 2f
0

internal waves are generated when the NIW forcing @2scM2

z̃ has non-
zero spectral content near these wavenumber combinations. The generality of near-resonant
2f

0

generation in NIW-balanced flow interaction is evident from the results in figure 3.1 and
the simulations in Danioux et al. (2008).

As resonant generation is generic, we seek to describe it by modifying equation (3.106). In
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particular, we need a term proportional to B
¯t in (3.106) in order to describe time-dependent

B-generation and free near-2f
0

propagation. We achieve this by applying the map

@t 7! �2if
0

+ @
¯t , (3.109)

to (3.103) and re-deriving the 2f
0

equation.
The scaling in section 3.2 implies that @

¯t is ✏2 smaller than 2f
0

; thus in appliying (3.109) to
(3.103) we ignore the even smaller O(✏4) terms. Introducing (3.104) into the result then yields

� �4 � 11L̄
�
B

¯t + 2if
0

�4 � 3L̄
�
B = �3@2s

dM2

z . (3.110)

The leftmost term is ✏2 smaller than (4�3L̄)B and only becomes important when (4�3L̄)B ⇡
0. Moreover, the addition of any multiple of (4 � 3L̄)B

¯t does not reduce the ‘accuracy’ of the
approximation in (3.110).

We exploit this ambiguity to improve the already-approximate form of (3.110). Consider
the exact, vertical mode-n dispersion relation for linear hydrostatic internal waves,

⌃ = ±f
0

s

1 +
k2

2n
, (3.111)

where ⌃(k,n) is the hydrostatic internal wave frequency, k is the horizontal wavenumber, and
n is the horizontal wavenumber of the nth vertical mode. The Taylor expansion of the positive
root of ⌃ around k =

p
3n with n fixed is

⌃ = 2f
0

+

p
3f

0

2n

⇣
k �

p
3n
⌘
+

f
0

162n

⇣
k �

p
3n
⌘
2

+ · · · . (3.112)

On the other hand, the approximate dispersion relation implied by (3.110) is found by linearizing
(3.110), projecting it onto vertical modes, and proposing B ⇠ eikx�i�¯t so that the frequency of
B is 2f

0

+ �. Algebra reveals that ⌃k = �k when k =
p
3n and ⌃ = 2f

0

. As a consequence,
the 2f

0

approximation in (3.110) produces the correct group velocity.
This feature is preserved under the addition of any multiple of (4 � 3L̄)B

¯t to (3.110). We
use this freedom to increase the accuracy of 2f

0

linear dispersion in the three-component model:
subtracting 9

2

(4 � 3L̄)B
¯t from (3.110), we obtain

�4 + 13L̄
�
B

¯t + 4if
0

�4 � 3L̄
�
B = �6@2s

dM2

z̃ . (3.113)

The approximate dispersion relation implied by (3.113) is

� = 4f
0

k2 � 32n
k2 + 132n

, (3.114)

which yields �kk = ⌃kk and means that (3.113) produces the correct near-2f
0

group velocity
over a range of wavenumbers. Figure 3.10 compares the exact dispersion relation with the
approximate dispersion relations for both the 2f

0

harmonic component as well as the NIW
component, demonstrating the accuracy of our ‘Padé’ approximation to the 2f

0

dispersion
relation. We use equation (3.113) to model the 2f

0

component of flow in the three-component
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Figure 10. Comparison between the exact hydrostatic internal wave dispersion relation and
the approximate linear dispersion relations in NIW-QG. The thick black line traces the exact
dispersion relation for linear hydrostatic internal waves. The dash-dotted line is the approximate
dispersion relation for the NIW component, f0(1 + k2/2�2

n), which is obtained by linearizing
(1.8). The dashed line is the approximate dispersion relation for the 2f0 component, which is
implied by (1.9) and (A 14), and given by 2f0 + � in (A 15). disprel

is

� = 2f0 +

p
3f0

2
n

⇣
k �

p
3

n

⌘
+

f0

162
n

⇣
k �

p
3

n

⌘2
+ · · · . (A 13)

On the other hand, the approximate dispersion relation implied by (A 11) is found by
linearizing (A 11), projecting it onto vertical modes, and proposing B ⇠ eikx�i�t̄. In
this form, the total frequency of the B-associated flow is 2f0 + �. Algebra reveals that
�

k

= �
k

when k =
p

3
n

and � = 2f0. As a consequence, the 2f0 approximation in
(A 11) produces the correct group velocity.

This feature is preserved under addition of any multiple of (4 � 3L̄)B
t̄

to (A 11).
However, the additional freedom allotted by our approximation permits us to proceed
further and match �

kk

= �
kk

. We achieve this by subtracting 9
2 (4 � 3L̄)B

t̄

from (A11),
which yields

�4 + 13L̄
�
B

t̄

+ 4if0

�4 � 3L̄
�
B = �6�2

s

dM2
z̃

. (A 14) bandaid2

The approximate dispersion relation implied by (A 14) is

� = 4f0
k2 � 32

n

k2 + 132
n

, (A 15) 2fapproxdisprel

The form in (A 15) yields �
kk

= �
kk

. Figure 10 compares the exact dispersion relation
with the approximate dispersion relations for both the 2f0 harmonic component as well
as the NIW component, demonstrating the accuracy of our “Padè” approximation to the
2f0 dispersion relation. We use equation (A 14) to model the 2f0 component of flow in
the NIW-QG-2f0 system.

Figure 3.10: Comparison between the exact hydrostatic internal wave dispersion relation and the approximate
linear dispersion relations in the three-component model. The thick black line traces the exact hydrostatic
internal wave dispersion relation. The green dash-dotted line is the approximate dispersion relation for the
NIW component, f0(1 + k2/22

n

), obtained by linearizing (3.8). The blue dashed line is the approximate
dispersion relation for the 2f0 component implied by (3.9) and (3.113) and given by 2f0 + � in (3.114). Insets
show the fractional error of the approximate NIW and 2f0 dispersion relations.

system. Note too that such a ‘Padé’ approximation can be applied in the same manner to the
NIW equation.

3.A.3 Expressions for U1 and ŵ0

With p̃
0

defined through B, we can calculate Ũ
1

. The vertically-averaged horizontal momentum
equation is

b̃U
1

˜t + if
0

b̃U
1

= �2p̃
0s⇤ � e�2if0˜t bJ

2

, (3.115)

= �2if
0

e�2if0˜tBs⇤ + 2if
0

e2if0
˜tB⇤

s⇤ � e�2if0˜t@scM2

z . (3.116)

which means that
b̃U
1

= e�2if0˜t
⇣
2Bs⇤ � if�1

0

@scM2

z

⌘
+ 2

3

e2if0
˜tB⇤

s⇤ . (3.117)

The vertically-averaged vertical velocity ŵ
0

is obtained from (3.101),

ŵ
0

= �2f 2

0

N2

⇣
e�2if0˜tBz̄ + e2if0

˜tB⇤
z̄

⌘
. (3.118)

With ŵ
0

we can obtain the full expression for Ũ
1

by solving (3.57), which yields

Ũ
1

= e�2if0˜t
�
2Bs⇤ � if�1

0

J
2

�
+ 2

3

e2if0
˜tB⇤

s⇤ +
f
0

N2

Mz̃z̃

⇣
e�3if0˜tBz̄ � eif0

˜tB⇤
z̄

⌘
. (3.119)
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3.B Improved dispersion for the near-inertial equation

In chapter 3.A.2, the linear part of the 2f
0

equation in (3.9) is engineered to better match the
exact hydrostatic dispersion relation expanded around 2f

0

and thus the wavenumber combi-
nations k = n

p
3. The same procedure can be used to improve dispersion in near-inertial

equation (3.8). In the near-inertial case, dispersion is enforced near the horizontal wavenumber
k = 0 by the operator 4A, and the scaling in chapter 3.2 implies that 4At ⌧ LAt. It is thus
a minor matter to add a4At to (3.8), where a is chosen to improve dispersion around f

0

and
horizontal wavenumber k = 0. The linear terms in the combination a4At + (3.8) are then

(a4 + L)At +
if0
2

4A = 0 . (3.120)

If A ⇠ eikx�i�thn(z), where hn is the nth eigenfunction of the eigenproblem Lhn = �2n with
hnz = 0 at top and bottom boundaries, (3.120) implies the linear dispersion relation

f
0

+ � = f
0

+
f
0

k2

2 (2n + ak2)
⇡ f

0

⇣
1 + k2

22
n

� a k4

24
n
+ · · ·

⌘
, (3.121)

where in the second approximate equality we expand for small k. Comparing this to the
expansion of the exact dispersion relation in (3.111) around k = 0,

⌃ ⇡ f
0

⇣
1 + k2

22
n

� k4

84
n
+ · · ·

⌘
, (3.122)

shows that the choice a = 1/4 and thus the addition of 4At/4 to (3.8) yields a near-inertial
equation that better approximates the exact dispersion relation around k = 0 and ⌃ = f

0

. The
improved version of (3.8) is

�
1

4

4 + L
�
At +

if
0

2
4A+ J

�
 ,LA

�
+ i L̃A

�
1

2

4 + �y
�
+

1

2
LA⇤�@x + i@y

�
2

B = 0 . (3.123)

Equation (3.123) is associated with slightly di↵erent conservation laws than those derived in
(3.6).

3.C A consistent two-dimensionalization of the three-
component model

The three-component system in (3.6) through (3.9) reduces from three to two-dimensions when
N is constant,  =  (x, y) is barotropic, and A and B are standing waves in the vertical such
that

A(x, y, z, t) = eimz�(x, y, t) , and B(x, y, z, t) = e2imz✓(x, y, t) . (3.124)

With the horizontal wavenumber


def

= mf
0

/N , (3.125)

we find that
LA = �eimz2� , and LA⇤ = �e�imz2�⇤ . (3.126)



Gregory LeClaire Wagner 71

Under the assumption that  is barotropic and that A and B have standing wave structure with
a single vertical wavelength, all z-dependent terms factor out of equations (3.6) through (3.9),
yielding a two-dimensional system without further approximation. The two-dimensionality of
 and standing-wave structure of A implies that q is two-dimensional and still governed by
horizontal advection so that

qt + J ( , q) = 0 , with q = 4 + �y + i4

2f0
J (�⇤,�) + 4

4f0
4|�|2 , (3.127)

The near-inertial equation (3.8) reduces to

�t � if0
22 4�+ J ( ,�) + i�

�
1

2

4 + �y
�
+ 1

2

�⇤ (@x + i@y)
2 ✓ = 0 . (3.128)

From (3.9) the two-dimensionalized 2f
0

equation turns into

�4 � 522
�
✓t + 4if

0

�4 + 122
�
✓ = �34

2

(@x � i@y)
2 �2 . (3.129)

The two-dimensionalized three-component system is equations (3.127) through (3.129). The
model parameters are Coriolis frequency f

0

and its variation �, buoyancy frequency N , and
near-inertial wavenumber .

The wave-wave interaction between near-inertial waves and the 2f
0

harmonic is unimportant
in the solutions of (3.127) through (3.129) reported here. A possible reason is the similarity
in vertical structure between A and B, while the simulations in chapter 3.1 and 3.7 indicate
the significant interactions are between near-inertial and 2f

0

waves of widely di↵ering vertical
scale. Equivalently, with similar vertical wavenumbers for A and B, resonant and near-resonant
interactions are restricted to triads with widely di↵ering horizontal scale.

The standing-wave and barotropic three-component model conserves two quantities analo-
gous to wave action in (3.81) and coupled energy in (3.89). Wave action becomes

A =

Z
1

2

4|�|2 + 1

6

|r✓|2 + 262

3

|✓|2 dV , (3.130)

and coupled energy is now given by

E =

Z
1

2

|r |2 + 2

4

|r�|2 + 4�y
2f0

|�|2 dV + E
2f , (3.131)

with

E
2f =

Z
i4

8f0

h
✓⇤ (@x � i@y)

2 �2 � ✓ (@x + i@y)
2 (�⇤)2

i
+ 1

3

|r✓|2 � 42|✓|2 dV . (3.132)

Both are conserved in the sense that At = 0 and Et = 0.
The ‘improved’ �-equation corresponding to the near-inertial equation with enhanced dis-

persion in (3.123) is

�
1 � 1

42 4
�
�t � if0

22 4�+ J ( ,�) + i�
�
1

2

4 + �y
�
+ 1

2

�⇤ (@x + i@y)
2 ✓ = 0 . (3.133)

We use (3.133) since it proves useful when ~ is large and dispersion is thus strong.
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3.C.1 Scaling the strength of wave-induced mean flows

The essential physics of (3.127) and (3.133) are exposed by simple scaling arguments. To fix
ideas, consider the deposition of a uniform near-inertial velocity �2� = Ũ in a turbulent
two-dimensional vorticity field q. For now, we ignore the 2f

0

field ✓. The ensuing evolution
clearly depends on the the wave magnitude Ũ and the spatial structure of q. More obscure is
the critical role played by the wave dispersivity,

~ def

=
f
0

2
=

N2

m2f
0

, (3.134)

which determines the strength of linear wave dispersion and controls the length-scales that
develop dynamically in the near-inertial field. This control over wave length-scales means that
~ determines the relative importance of wave field nonlinearity and magnitude of the wave-
induced balanced flow.

The importance of dispersivity is revealed by examining the two dispersive balances possible
in (3.133),

~4� ⇠ J ( ,�) , or ~4� ⇠ �4 . (3.135)

The two balances in (3.135) reflect a competition between the smoothing e↵ects of dispersion
and either stirring by advection or wave refraction. If we neglect the wave-induced contribution
to  due to the �-dependent terms in (3.127), these balances imply two distinct scalings for L̃,
the characteristic horizontal scale of �:

advective: L̃ ⇠ ~
Ū

and refractive: L̃ ⇠
r

~L̄
Ū

, (3.136)

where L̄ and Ū are characteristic length and velocity scales for q. Since only dispersion can
limit the reduction of L̃, the smaller of the two scalings determines L̃ and the dominant balance
in (3.133). Thus for fixed Ū and ignoring the e↵ect of wave nonlinearity, decreasing the scale of
|r | ⇠ Ū or increasing the dispsersivity ~ strengthens the refractive balance, while decreasing
~ leads to smaller scales in � and strengthens the advective balance. These scaling arguments,
which ignore finite amplitude wave e↵ects, were identified by Danioux et al. (2015) for a lin-
earized shallow water near-inertial equation identical to (3.133) with  prescribed. Danioux
et al. (2015) additionally identify the scaling L̃ ⇠ L̄ when advection and refraction are equally
important.

The scalings in (3.136) make clear that the wave field nonlinearity measured by ✏ = Ũ/f
0

L̃
depends not only on the strength of the leading-order wave field through Ũ ⇠ 2�, but also
on dispersivity through its control of L̃. Dispersivity thus exerts an important influence on
the ultimate magnitude of the nonlinear wave-induced mean flow and wave-turbulence coupled
evolution. To see this explicitly we use the decomposition  =  q+ w, where  q is the stream-
function associated with APV through 4 q = q and  w is the wave-induced streamfunction
defined through

4 w = � i4

2f0
J (�⇤,�) � 4

4f0
4|�|2 . (3.137)

From (3.137) we find the wave-induced flow magnitude |r w| scales with

|r w| ⇠ Ũ2

f
0

L̃
= ✏ Ũ . (3.138)
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The wave-induced mean flow increases in magnitude when L̃ decreases, corresponding to the
increasing distortion of the wave field and the increasing importance of wave nonlinearity.
When the advective balance from (3.135) holds, the scaling in (3.138) implies that in the weak
dispersion regime, the magnitude of the wave-induced mean flow,

|r w| ⇠ Ũ2Ū

f
0

~ (3.139)

is inversely proportional to the dispersivity. The scaling analysis reveals how the initial mag-
nitude of the near-inertial wave is not su�cient to predict ✏: the magnitude of the wave field
nonlinearity measured by ✏ arises organically out of the wave-turbulence interaction and has an
important dependence on wave dispersivity.

One caveat with the preceding scaling argument is its ignorance of the wave self-advection
term J ( w,�) that contributes to the advective balance in (3.135). This advection term is an
important piece of finite-amplitude wave evolution, and may act to arrest the decrease in L̃
with ~.

3.C.2 Near-inertial interruption of free turbulent decay

We explore the dynamics in equations (3.127) and (3.133) with a brief exploration of the role
of dispersivity in a physical scenario in which the free decay of two-dimensional turbulence
from semi-random initial conditions is interrupted by the sudden deposition of a horizontally-
uniform near-inertial wave. We set both � = 0 and ✓ 7! 0 to focus solely on the wave-turbulence
interaction and use the �-equation with improved dispersion in (3.133).

In the preliminary stage, q obeys the ordinary two-dimensional turbulence dynamics de-
scribed by equation (3.127) with � = 0, and decays from the initial condition

 (x, y, 0) =  
0

 
5X

n=2

⇣
kn
k2

⌘�1

cos (knx+Xn)

! 
5X

n=2

⇣
kn
k2

⌘�1

cos (kny + Yn)

!
, (3.140)

where kn = 2⇡n/L and the Xn and Yn are random phases between 0 and 2⇡. The magnitude
 
0

is set so that Ro = max (4 ) /f
0

= 0.1 initially. With the initial condition in (3.140), q is
stretched and filamented rapidly at early times before eventually coalescing into a small number
of roaming eddies over several hundreds of inertial periods. The duration of the preliminary
turbulent decay, t

0

, thus determines the initial spatial structure of q. In the results shown here
the near-inertial wave is deposited after a relatively short preliminary integration of t

0

= 200
inertial periods corresponding roughly to 2⇡t

0

/Ro ⇡ 120 eddy turnover times.
We solve equations (3.127) and (3.133) with pseudospectral method in a square and periodic

domain in x, y with �L/2 < x, y < L/2, L = 400 km and grid resolution 10242 unless stated
otherwise. The buoyancy frequency is N = 2 ⇥ 10�3 s�1 and the inertial frequency is 10�4 s�1.
High order hyperdissipation is added for stability. Some details of the pseudospectral method
are described in chapter 3.C.3.

An initial feel for the dynamics in (3.127) and (3.133) is given by figure 3.11, which compares
vorticity evolution in ordinary decaying two-dimensional turbulence with vorticity evolution
within a strong near-inertial wave field. The vertical wavelength of the near-inertial wave is
2⇡/m = 600 m and its initial magnitude is around Ũ = 0.2 m/s so that ✏/Ro ⇡ Ũ/max (|r |) =
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2. The advection associated with the near-inertial field gradually distorts the vorticity field
away from the non-wave case. The distortion ranges from fairly close correlation t = 50 inertial
periods the vorticity fields to the dramatic filamenting and distortion apparent at t = 400
inertial periods. The gradualness of the vorticity distortion corresponds to the relative weakness
of the wave-induced balanced flow, which is roughly an order of magnitude weaker than the
leading-order oscillation of the waves.

A better understanding of the role of dispersivity is given by figure 3.12, which compares
snapshots of the vorticity field q/f

0

, the wave-induced mean flow magnitude |r w|, and the
wave magnitude 2|�| after t = 400 inertial periods of wave-turbulence coupled evolution for
four values of m and thus ~. The initial state is the same used for figure 3.11 and consists of a
uniform near-inertial wave with Ũ ⇡ 0.2 m/s and vorticity field after t

0

= 200 inertial periods
of initial decay from (3.140).

The dependence on wave dispersivity is clear: decreasing dispersivity leads to smaller and
smaller scales in the wave velocity field 2|�|. The small-scales in � lead in turn to a wave-
induced mean flow r w which is both stronger and of smaller scale as dispersivity becomes
weaker. The increased strength and smaller scale of the vorticity-advecting flow r w means
that wave fields with weaker dispersivity interact more strongly with the mean flow. The e↵ect
of the waves becomes dramatic for the very small vertical wavelength 2⇡/m = 200 m on the far
right, in which the smooth eddy structures of ordinary two-dimensional turbulence are replaced
by a highly corrugated and filamentary vorticity field.

The two-component, two-dimensional model in equations (3.127) through (3.133) with ✓ 7! 0
provides a convenient system to study the coupled evolution of mean vorticity and near-inertial
waves. The scaling argument in chapter 3.C.1 reveals the crucial role of wave dispersivity
or, alternatively, the vertical scale of the waves in setting the strength of the wave-turbulence
interaction. Waves with smaller vertical scales and thus weaker dispersion are more strongly dis-
torted by turbulence, develop stronger wave-induced mean flows, exert more severe alterations
on turbulent evolution, and extract more energy from the mean vorticity. The qualitative nature
of the scaling arguments is roughly confirmed by figure 3.12, but both quantitative confirmation
and analysis of energy transfer between waves and flow awaits future work.

3.C.3 The pseudospectral numerical method

Equations (3.127) through (3.129) and (3.133) can be solved on a periodic grid in x, y with
a pseudospectral numerical method. For this we decompose q, �, and ✓ into Fourier modes,
and denote their Fourier transforms with q̂, �̂, and ✓̂. x-wavenumbers are denoted by k and
y-wavenumbers by `, so that horizontal derivatives become

�x 7! ik�̂ and �y 7! i`�̂ . (3.141)

We write the Jacobian J(a, b) = axby � aybx and its transform as

J (a, b) = @x (aby) � @y (abx) , and \J(a, b) = ik caby � i` cabx . (3.142)

Note that J(a, b) = @y (axb)�@x (ayb) and \J(a, b) = i` caxb� ik cayb are also useful. We also define

q0
def

= q � �y such that q0 = 4 + i4

2f0
J (�⇤,�) + 4

4f0
4|�|2 (3.143)
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Figure 3.11: Comparison of ordinary and wave-a↵ected two-dimensional turbulent evolution. The bottom two rows show the evolution of vorticity q/f0 and
near-inertial speed |�| following the deposition of a uniform near-inertial wave with vertical wavelength 2⇡/m = 600 m into the vorticity field of decaying
two-dimensional turbulence. The top row shows the turbulent evolution of vorticity when waves are absent. The turbulent vorticity field is generated by
integrating (3.127) with � = 0 for 200 inertial periods of preliminary turbulent decay. Time increases from left to right from t = 50 to t = 400 inertial
periods. The flow has an initial maximum Rossby number of max(q)/f0 ⇡ 0.1 and the initial wave-amplitude is chosen so that ✏/Ro ⇡ Ũ/max(|r |) = 2.
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Figure 3.12: E↵ect of vertical wavenumber and thus wave dispersivity on the coupled evolution of NIWs and
two-dimensional turbulence. The four columns compare results for the four vertical wavelengths that label
each column corresponding to the dispersivities ~ = 2594, 648.5, 162.1, and 40.53 m2/s. The top row plots the
vorticity q/f0; the middle row plots the wave-induced mean flow speed |r w|, and the bottom row plots the
wave speed 2|�| = |LA|. The initial vorticity and wave fields are the same as in figure 3.11 and all snapshots
are taken from t = 400 inertial periods.
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obeys
q0t + J( , q0) + � x = 0 , (3.144)

The transform of (3.144) is

q̂t +Dq̂ = � \J( , q) � ik�  ̂ , (3.145)

where D is a hyperdi↵usion operator included for stability. The transform of q0 yields an
inversion relation for  ̂,

 ̂ = � 1

K2 q̂ � 4

2K2f0

h
k[�⇤�y � `[�⇤�x

i
� 4

4f0
d|�|2 . (3.146)

The transform of the two-dimensionalized near-inertial equation (3.128) is

�̂t +
if0K2

22 �̂+D�̂ = � \J( ,�) � i�
�
1

2

4 + �y
�V� 1

2

[�⇤S✓ , (3.147)

where K2 = k2 + `2 and the operator S is

S
def

= (@x + i@y)
2 = @2x + 2i@x@y � @2y . (3.148)

Alternatively, the transform of the improved �-equation in (3.133) is

�̂t +
2if0K2

42
+K2 �̂+D�̂ = � 42

42
+K2

\J( ,�) � 4i2

42
+K2�

�
1

2

4 + �y
�V� 2i2

42
+K2

[�⇤S✓ , (3.149)

Finally, equation (3.129) transforms to

✓̂t +
4if

0

(K2 � 122)

K2 + 522
✓̂ +D✓̂ =

3 (`2 + 2ik`� k2)

2 (K2 + 522)
b�2 . (3.150)

Notice that each of (3.145), (3.149), and (3.150) take the form

�̂t + µ��̂ = N� , (3.151)

where

µq = D , (3.152)

µ� =
2if

0

K2

42 +K2

+D , (3.153)

µ✓ =
4if

0

(K2 � 122)

K2 + 522
+D . (3.154)

D must be positive for it to damp the solution. The N are

Nq = ikd yq � i`d xq � ik�  ̂ , (3.155)

N� = ikd y�� i`d x�� i�
�
1

2

4 + �y
�V� 1

2

[�⇤S✓ , (3.156)

N✓ =
3 (`2 + 2ik`� k2)

2 (K2 + 522)
b�2 . (3.157)



78 Waves and flow

Acknowledgements

Part of this chapter was submitted for publication in the Journal of Fluid Mechanics by the
author Gregory L. Wagner and William R. Young under the title ‘A three-component model for
the coupled evolution of near-inertial waves, quasi-geostrophic flow, and the near-inertial second
harmonic’. The work was supported by the National Science Foundation under OCE-1357047.



Chapter 4

Slow evolution of internal tides in
quasi-geostrophic flow

4.1 Introduction

Internal tides are freely-propagating inertia-gravity waves with diurnal or semidiurnal tidal fre-
quencies that are generated when surface tides slosh rotating and stratified water over rough
bathymetry and underwater mountains. The surface tides familiar to coastal life are essentially
meter-high, depth-independent rotating shallow water waves forced by the gravitational pull of
the sun and moon and predictable to within a centimeter in the open ocean. Internal tides have
dynamically-unimportant surface displacements on the order of centimeters, depth-dependent
interior density and velocity structure, and are much more di�cult to predict because of their
freely-propagating nature and modulation by quasi-geostrophic flows. The name ‘internal tide’
is potentially confusing because they are not directly forced by a harmonic gravitational per-
turbation.

Internal tides are an energetic and prominent component of motion almost everywhere in
the Earth’s ocean. The ubiquity of their generation and basin-crossing propagation manifests in
the striking global maps of their coherent mode-one surface signature extracted from decades
of space-borne altimetry data by Zhao et al. (2016). And the role of internal tides in both
ocean circulation and the astrodynamical evolution of the Earth and moon was demonstrated
by Egbert & Ray (2000), who constrained a shallow water surface tide model with long-term
altimetry observations to show that roughly 25–30% of the 3.75 terawatts dissipated from
surface tides is converted to internal waves in the deep ocean. Thus internal tides extract
energy from the Earth-moon system, gradually slow the Earth’s rotation, and contribute to
the moon’s outward drift of 3.82 cm per year. At the same time, Egbert and Ray’s result
shows that internal tides are energetic enough to contribute to mixing processes that lift dense
abyssal waters and thereby set the ocean’s density stratification (Ferrari & Wunsch, 2009). The
detailed mechanisms and actual magnitude of the tidal contribution to abyssal mixing are yet
unclear.

The ubiquity of internal tides also explains the irritation provoked by their contamination
temporally-sparse observations intended to observe more slowly-evolving and persistent cur-
rents. This aliasing issue confounds both ship-based hydrographic observations (Wunsch, 1975;
Munk, 1981) and planned altimetric observations of quasi-geostrophic flows with scales smaller
than 50 km and faster than a month (Ponte & Klein, 2015).

79
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The scattering of oceanic internal tides by quasi-geostrophic flow is an important part of
their dynamics over the long time-scales of their basin-crossing propagation and stymies the
systematic removal of their contaminating signal from altimetric data. In addition, the thought
experiment by Bühler & McIntyre (2005) and inferences from 1978-1979 POLYMODE Local
Dynamics experiment data by Polzin (2010) suggest that an energy budget for the ocean’s
quasi-geostrophic mesoscale should include a still-mysterious transfer of energy from quasi-
geostrophic flows to the internal wave field. Conceivably, quasi-geostrophic turbulence might
lose energy or evolve with yet-undescribed dynamics when irradiated with a strong internal tide.
Finally, like the case of near-inertial waves described in chapter 3, the distortion of internal tides
by heterogeneous flows may precipitate nonlinear wave-wave interactions that transfer energy
directly to the small spatial scales of wave breaking and mixing.

We thus find two separate motivations to develop a slow evolution equation for the inter-
nal tide in quasi-geostrophic flow: (i) to provide a potentially predictive model for internal
tide propagation through quasi-geostrophic flow that is simpler than either the nonlinear or
linearized Boussinesq equations; and (ii) as the first step toward more sophisticated reduced
models for the nonlinear coupled evolution and energetic interaction between internal tides,
quasi-geostrophic flow, and possibly also near-inertial waves or tidal harmonics. To this end,
we assume the internal tide is a hydrostatic inertia-gravity wave, which limits our scope to mid-
latitudes between roughly 15� and 60� latitude. Poleward of 60�, the tidal frequency becomes
near-inertial and slow internal tide dynamics are better described by Young & Ben Jelloul
(1997)’s near-inertial equation. Equatorward of 15�, the vertical component of the Earth’s
rotation weakens to the point that both the horizontal component of Earth’s rotation and
non-hydrostatic dynamics are important for slow internal tide evolution.

4.1.1 Summary of the internal tide equation

The principal result of this chapter is an equation that describes the slow evolution of inter-
nal tides in quasi-geostrophic flow. In this slow internal tide equation, the pressure field is
decomposed into a quasi-geostrophic and wave component,

p = f
0

�
 + e�i�tA+ ei�tA⇤� , (4.1)

where  is the quasi-geostrophic streamfunction, A is the complex amplitude of the wavy
pressure field oscillating with frequency �, and f

0

= 4⇡ sin�/day is the constant local inertial
frequency at latitude �. Both  and A evolve slowly over time-scales much longer than 1/�.
The pressure in (4.1) is a special solution justified only when initial conditions or oscillatory
forcing projects onto a combination of motions with frequency � and nearly-balanced flow. For
the semidiurnal lunar tide � ⇡ 2⇡/12.421 hours�1 ⇡ 1.4 ⇥ 10�4 s�1.

The leading-order pressure in (4.1) is related to hydrostatic buoyancy b and velocity field
u = (u, v, w) through the linear hydrostatic Boussinesq equations,

b = f
0

�
 z + e�i�tAz + ei�tA⇤

z

�
, (4.2)

and
u = r? � 1

↵f0
(i�r↵ + f

0

r?) e
�i�tA+ cc , (4.3)

where ‘cc’ denotes the complex conjugate. Equation (4.3) writes u in terms of the two vector
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operators

r?
def

= �@y x̂ + @x ŷ and r↵
def

= @x x̂ + @y ŷ � ↵f 2

0

N2

@z ẑ , (4.4)

which ultimately simplify the presentation.
The derivation of the slow hydrostatic wave equation assumes that the nonlinear interac-

tion of  and A induces small perturbations to a dominant linear balance in the hydrostatic
Boussinesq equations (A.18) through (A.22). In that case, the form of p in (4.1) implies that
A approximately satisfies the linear dispersion constraint,

0 ⇡
⇣
@2x + @2y
| {z }

def
=4

�↵ @z
f 2

0

N2

@z
| {z }

def
=L

⌘
A = D↵A , where ↵

def

=
�2 � f 2

0

f 2

0

, (4.5)

and N(z) is the buoyancy frequency reflecting a background density stratification with arbitrary
vertical structure. The operator

D↵
def

= 4 � ↵L (4.6)

is the ‘dispersion operator’ and ↵ is an O(1) frequency parameter. The linear hydrostatic dis-
persion relation for constant N implies ↵ = (Nk/f

0

m)2 is the ‘wave Burger number’ or squared
aspect ratio for hydrostatic waves with horizontal wavenumber k and vertical wavenumber m.
When ↵ is small the wave is near-inertial and better described by the model in chapter 3; when
↵ is large non-hydrostatic e↵ects become important.

The approximate equality ⇡ in (4.5) would be exact if the wave field in p were constrained to
exactly satisfy the linear dispersion relation. The essence of our derivation is relax the dispersion
constraint by ‘reconstituting’ the leading-order equation, D↵A = 0, with the first-order equation
that describes the nonlinear interaction of  and A. The result is a slow evolution equation for
A,

0 =
⇥4 + (4 + 3↵) L

⇤
At + 2i�D↵A+ 2(1+↵)

↵

⇥4J ( , A) + J ( ,4A) � J (4 , A)
⇤

� 2

↵J (D↵ , A) +
2i(1+↵)1/2

↵

h
2J ( x, Ay) � 2J ( y, Ax) +rh · (D↵ rhA)

i

� 2i (1 + ↵)1/2 r · f2
0

N2 (Azr↵ z +  z@zr↵A) .

(4.7)

where the Jacobian operator is J(a, b) = axby � aybx. Equation (4.7) is a counterpart to
the ‘YBJ’ equation describing the slow evolution of near-inertial waves in three-dimensional
quasi-geostrophic flow  and arbitrary background stratification reflected in N(z). The greatly
increased complexity of (4.7) over the YBJ equation is the cost of considering more strongly
dispersive hydrostatic waves with frequency � > f

0

.
The reconstitution of the leading-order equation, D↵A = 0, with the first-order equation

that contributes all the nonlinear terms in (4.7) means that under weakly nonlinear conditions
D↵A is by far the largest contributor to (4.7). Thus, as intimated in (4.5), the pressure field p
corresponding to solutions of (4.7) almost satisfies the linear dispersion relation for hydrostatic
internal waves with frequency �. Roberts (1985) explains how the method of reconstitution
permits equations like (4.7) or the Navier-Stokes equation to describe a broader range of dy-
namics than would be permitted by more ceremonious asymptotic expansions. The benefit of
reconstitution to (4.7) is a description of the slow evolution of more spatial modes of A than
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would be allowed if the solution were restricted to those that exactly satisfy D↵A = 0 and thus
the exact hydrostatic dispersion relation.

We begin our derivation by non-dimensionalizing the hydrostatic Boussinesq equations and
their associated ‘wave operator form’ in chapter 4.2. In chapter 4.3 we derive and make finishing
touches to the model. In chapter 4.4 we establish that  obeys quasi-geostrophic dynamics and
in chapter 4.5 we present some example solutions for hydrostatic wave propagation in barotropic
flows that illustrate the power and limitations of equation (4.7). We wrap up and contemplate
future hopes for the slow wave equation and its relatives in chapter 4.6.

4.2 The hydrostatic Boussinesq equations and their ‘wave
operator form’

The hydrostatic Boussinesq equations in equations (A.18) through (A.22) emerge from the
full Boussinesq equations in (1.7) through (1.11) when the vertical acceleration Dtw is small
compared to pz or b. In this case the vertical momentum equation in (1.9) becomes

pz ⇡ b . (4.8)

The hydrostatic approximation in (4.8) is sensible for motions with large horizontal scales and
small vertical scales, which implies that vertical velocities and vertical accelerations are rela-
tively small. In the context of inertia-gravity internal waves with frequency �, the hydrostatic
approximation is valid when (�/N)2 ⌧ 1.

As discussed in appendix A, the hydrostatic Boussinesq equations in (A.18) through (A.22)
with constant Coriolis frequency f = f

0

are usefully articulated in their ‘wave operator form’,

@t
h
@2t L + f 2

0

(4 + L)
i
p = �f 2

0

S · (u ·r)u � @z
f2
0

N2

�
@2t + f 2

0

�
(u ·rpz) , (4.9)

which employs the three operators 4 and L defined in (4.5) and S defined by

S
def

= @t
�
@x x̂ + @y ŷ| {z }

def
=rh

�
+ f

0

r? , (4.10)

where rh contains the horizontal components of the three-dimensional gradient r. The left
side of (4.9) is the hydrostatic internal wave operator acting on p. The right-side contains the
nonlinear terms.

4.2.1 Tidally-appropriate non-dimensionalization

We non-dimensionalize the hydrostatic Boussinesq equations in (A.18) through (A.22) using
similar logic as in chapter 2.3.3 but with one crucial di↵erence: both waves and flow have the
same magnitude and thus the same characteristic velocity U . Thus after scaling x, y with L
and u, v with U , the emergent non-dimensional parameter

✏
def

=
U

f
0

L
(4.11)
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is both the Rossby number as well as a measure of wave amplitude. We assume ✏ ⌧ 1, which
means linear balances dominate the dynamics. As in chapter 2.3.3, we assume the Burger
number is

Bu
def

=

✓
N

0

H

f
0

L

◆
2

= 1 , (4.12)

where N
0

is the characteristic magnitude of N(z). This assumption on Bu is equivalent to the
assumption that ↵ = �2/f 2

0

� 1 = O(1). For waves with the 12.421-hour lunar semidiurnal
period and thus ↵ ⇡ 12.9 and 0.24 at 15� and 60� latitude respectively, this assumption is
appropriate. Poleward of 60�, ↵ is small and the internal tide is better characterized as near-
inertial, while equatorward of 15� ↵ is large and non-hydrostatic physics become important.
The discussion surrounding equations (2.22) through (2.26) explains that the scaling H/L ⌧ 1
justifies use of the hydrostatic equations in (A.18) through (A.22). More detail on this non-
dimensionalization and its consequences is given in chapter 2.3.3.

With these prescriptions the hydrostatic Boussinesq equations in (A.18) through (A.22) are
transformed into non-dimensional form,

ut � v + px = �✏u ·ru , (4.13)

vt + u+ py = �✏u ·rv , (4.14)

pz = b , (4.15)

bt + wN2 = �✏u ·rb , (4.16)

ux + vy + wz = 0 , (4.17)

while the wave operator form in (4.9) becomes

@t
h
@2t L + 4 + L

i
p = �✏

h
S · (u ·r)u + @z

1

N2

�
@2t + 1

�
(u ·rpz)

i
. (4.18)

The non-dimensionalized vector operator S from (4.10) is S = @trh � r?.

4.2.2 The two-time expansion

Waves oscillate rapidly on their linear, dispersion time-scale and evolve slowly over time-scales
of nonlinear advection and refraction. We thus propose the two-time expansion,

@t 7! @
˜t + ✏ @

¯t , (4.19)

where t̃ ⇠ f�1

0

is the wave dispersion time-scale and t̄ ⇠ L/U = (✏f
0

)�1 is the time-scale for
slow nonlinear evolution. Subjecting the wave operator in (4.18) to the two-time expansion
yields

@t
h
@2
˜t L + f 2

0

(4 + L)
i

7! (@
˜t + ✏ @

¯t)
h �
@2
˜t + 2✏@

˜t@¯t + ✏2@
¯t

�
L + f 2

0

(4 + L)
i
. (4.20)

At O(1) the operator is the previously mentioned linear Boussinesq operator

@
˜t

h
@2
˜t L + f 2

0

(4 + L)
i
, (4.21)
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but at O(✏), we find

✏ @
¯t

h
2@2

˜t L + @2
˜t L + f 2

0

(4 + L)
| {z }

O(1) operator

i
(4.22)

The appearance of the O(1) operator in (4.22) simplifies the equation for slow wave evolution
that ultimately arises at O(✏). The two-timing also has consequences for the system in (4.13)
through (4.17), but these are not spelled out in detail because we only require this system’s
leading-order solution in the development that follows.

4.3 The internal tide equation

To isolate the slow evolution of the internal tide over the long time-scales of t̄, we expand
all fields in ✏, so that pressure becomes p = p

0

+ ✏ p
1

+ · · · , for example. We perform the
expansion in dimensional variables for clarity, using the non-dimensional equations in (4.13)
through (4.18) for guidance.

4.3.1 At leading-order

At leading-order, the hydrostatic Boussinesq equations in (4.13) through (4.17) are

u
0t � f

0

v
0

+ p
0x = 0 , (4.23)

v
0t + f

0

u
0

+ p
0y = 0 , (4.24)

p
0z = b

0

, (4.25)

b
0t + w

0

N2 = 0 , (4.26)

u
0x + v

0y + w
0z = 0 . (4.27)

while its leading-order wave operator form from (4.18) is

@
˜t

h
@2
˜t L + f 2

0

(4 + L)
i
p
0

= 0 . (4.28)

We write the leading-order solution as

p
0

= f
0

⇣
 + e�i�˜tA+ ei�

˜tA⇤
⌘
, (4.29)

where A and  depend on x and the slow time t̄. Both A and  have streamfunction units,
such that r?A and r? have units of velocity. Equation (4.28) implies that A obeys the linear
�-frequency dispersion relation:

� i�f 3

0

h
4 � �2 � f 2

0

f 2

0| {z }
def
= ↵

L
i
A = 0 , (4.30)

Equations (4.23) and (4.24) imply that  obeys geostrophic balance. In (4.30) we define the
non-dimensional number ↵ = (�2 � f 2

0

) /f 2

0

. Our scaling assumption Bu = O(1) implies that
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↵ = O(1) also. For convenience we define the ‘dispersion operator’ D↵ as

D↵
def

= 4 � �2 � f 2

0

f 2

0

L = 4 � ↵L , (4.31)

so that the leading-order equation (4.30) becomes simply D↵A = 0. When � = 2f
0

we find
that D↵ = 4 � 3L is the operator so familiar from chapter 3.

Equation (4.25) implies that

b
0

= f
0

⇣
 z + e�i�˜tAz + ei�

˜tA⇤
z

⌘
, (4.32)

and (4.26) subsequently yields

w
0

=
i�f

0

N2

⇣
e�i�˜tAz � ei�

˜tA⇤
z

⌘
. (4.33)

By merging @
˜t(4.23)+ f

0

(4.24) with @
˜t(4.24)� f

0

(4.23) we obtain the single vector equation for
horizontal velocity u

0h = (u
0

, v
0

, 0),

�
@2
˜t + f 2

0

�
u

0h =
⇥� @
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0

r?
⇤
p
0

. (4.34)

Thus given p
0

in (4.29), the three components of velocity are
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CCCA
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where we have used the fact that �2 � f 2

0

= ↵f 2

0

. A more compact expression is

u

0

= r? � 1

↵f0

�
i�r↵ + f

0

r?
�
e�i�˜tA+ 1

↵f0

�
i�r↵ � f

0

r?
�
ei�

˜tA⇤ , (4.36)

which uses the three-component vector operator

r↵
def

= @x x̂ + @y ŷ � ↵f 2

0

N2

@z ẑ . (4.37)

Notice that r↵ does not commute with @z and that r · r↵ = 4 � ↵L = D↵. The advective
derivative is

u

0

·r = J ( , ·) � e�i�˜t

↵f
0

⇥
f
0

J (A, ·) + i�r↵A ·r
⇤
+ cc , (4.38)

where ‘cc’ denotes the complex conjugate. The horizontal divergence and vertical vorticity

!
def

= r? · u

0

are

rh · u

0

=
i
p
1 + ↵

↵

⇣
ei�t4A⇤ � e�i�t4A

⌘
and ! = � 1

↵

⇣
e�i�t4A+ ei�t4A⇤

⌘
. (4.39)
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The average total energy in the linear solution is

E = 1

2

⇣
u2

0

+ v2
0

+ w2

0

+N�2b2
0

⌘
, (4.40)

= 1
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2N2
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�2
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◆
|Az|2 . (4.41)

The horizontal kinetic energy in the wave field is (1+2↵)|rhA|2/2↵2 and the potential energy is
f 2

0

|Az|2/2N2. The vertical kinetic energy, (�f
0

)2|Az|2/2N4, is a small correction to the potential
energy in the regime we consider where both � and f

0

are much less than N .

4.3.2 At first-order

The O(✏) terms in (4.18) reduce to

�2�2f
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0
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0

) ,
(4.42)

= RHS(A, ) , (4.43)

where S
0

in (4.42) is the leading-order part of (4.10) and equation (4.43) defines the useful
euphemism ‘RHS’ for the nonlinear right hand side of (4.42) that forces the linear wave operator
on the left. We have used (4.30) to simplify the leftmost term in which the O(✏) wave operator
in (4.22) acts on e�i�˜tA+ ei�˜tA⇤.

The essence of our strategy for extracting the slow evolution of the wave amplitude A is to
go some, but not all, of the distance toward applying the solvability condition incurred on the
wave amplitude A in (4.42). Note that this is not the only solvability condition demanded by
(4.42) or the O(✏) terms in (4.13) through (4.17): additional conditions on  describe quasi-
geostrophic evolution, and a condition on motions with frequency 2� describe the nonlinear
interaction between �- and 2�-frequency waves. We ignore these other solvability conditions
here.

We make a first step towards the slow evolution equation for A by isolating

� 2�2f
0

LA
¯t = the part of RHS(A, ) proportional to e�i�˜t (4.44)

from (4.42). The extraction of (4.44) from the O(✏) wave equation in (4.42) is a partial step
toward applying the solvability condition to (4.42). This step abuses the logic of solvability
conditions: a more systematic development would project (4.42) onto spatial wave modes,
which are three-dimensional �-frequency eigenfunctions of the O(1) wave equation (4.28). This
projection would eliminate the wave operator acting on p

1

in (4.42) and yield a set of slow-
evolution ODEs for spectral components of A. An identical result is produced by projecting
(4.44) onto the �-frequency spatial modes.

Here, we avoid the formal spatial projection of (4.42) and content ourselves with simply
extracting the necessary terms based on frequency content alone. This crude manipulation of
(4.42) means that the slow evolution equation in (4.7) contains unphysical dynamics for spectral
components of A are far from the �-frequency linear dispersion relation. However, due to (i) our
focus on weakly nonlinearly evolution expanded around �-frequencies and (ii) the reconstitution
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described in chapter 4.3.3, the spectrum ofA remains close to the �-frequency dispersion relation
where D↵A ⇡ 0, thus rendering the spatial projection of (4.44) an unnecessary complication.

The strenuous bookkeeping required to parse RHS for terms proportional to e�i�˜t is detailed
in chapter 4.A. After dividing by 2�2f

0

, the result is

0 = LA
¯t +

1

2↵

h
4J ( , A) + J ( ,4A) � J (4 , A)

i
� f2

0
↵�2J (D↵ , A)

+ if0
↵�

h
2J ( x, Ay) � 2J ( y, Ax) +rh · (D↵ rhA)

i

� if0
� r · f2

0
N2 (Azr↵ z +  z@zr↵A) .

(4.45)

An advantage of this form is that the slow evolution terms associated with the vertical structure
of  are clustered in a compact expression.

4.3.3 Reconstitution

The slow evolution equation is completed by adding (4.30) to (4.45); or in other words, by
adding the leading-order equation �i�f 3

0

D↵A = 0 to the O(✏) terms proportional to e�i�t. As
in (4.45) we divide by 2�2f

0

for presentability and eliminate �/f
0

in favor of ↵. Rearranging,
we finally arrive with

0 = LA
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1+↵D↵A+ 1
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2J ( x, Ay) � 2J ( y, Ax) +rh · (D↵ rhA)
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� i
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q
1

1+↵r · f2
0

N2 (Azr↵ z +  z@zr↵A) .

(4.46)

Equation (4.46) describes the slow evolution of a hydrostatic internal wave field with frequency
� in three-dimensional quasi-geostrophic flow with streamfunction  , arbitrary background
stratification with buoyancy frequency N2(z), and with frequency parameter ↵ = (�2 � f 2

0

) /f 2

0

and inertial frequency f
0

.
A suspicious aspect of (4.46) is how D↵A = 0 was used repeatedly in the algebra of chapter

4.A before being abruptly abandoned in writing (4.46). Yet the dispersion term i�D↵A/2 is
a large O(1) term among small O(✏) terms from (4.45), and thus the largest term by far in
(4.46). This means solutions to (4.46) satisfy D↵A ⇡ 0 so that A is tethered to the �-frequency
hydrostatic dispersion relation. The errors made in assuming D↵A = 0 in the derivation of
(4.44) are therefore small and, under the assumed weakly nonlinear conditions, of the same
order as other neglected terms from (4.9). Our reconstitution method permits the physical-
space formulation of (4.46) and the inclusion of wave modes that only approximately satisfy
D↵A ⇡ 0. Ultimately, it would be desirable to prove that (4.46) conserves some form of wave
energy.
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4.3.4 Remodeling

We return to abusing the model with the approximation D↵A ⇡ 0 one final time to improve
the model’s linear dynamics. The linear part of (4.46) is

LA
¯t +

if0
2

q
1

1+↵ (4 � ↵L)A = 0 . (4.47)

The vertical modes associated with the operator L are the eigenfunctions hn that solve the
eigenproblem

Lhn + 2nhn = 0 , with hnz = 0 at z = �H, 0 , (4.48)

where n is the horizontal wavenumber of vertical mode n. Thus assuming the spectral repre-
sentation An ⇠ eikx�i�0thn(z) and noting that �0 is the perturbation of the wave field frequency
from � leads to the linear dispersion relation implied by (4.47),

� + �0 = � +
f
0

(k2 � ↵2n)

22n
p
1 + ↵

. (4.49)

The dispersion relation in (4.49) is an expansion of the exact mode-n hydrostatic dispersion
relation,

⌃ = ±f
0

s

1 +
k2

2n
, (4.50)

around the wavenumber combinations corresponding to ⌃ = �. When k = n
p
↵ we have

⌃ = f
0

p
1 + ↵ = � and ⌃k =

f
0

n

r
↵

1 + ↵
= �0

k , (4.51)

where a subscript k denotes the partial derivative @k with respect to k. The fact that ⌃k = �0
k

at k = n
p
↵ means that (4.47) correctly captures the group velocity of waves at frequency �.

On the other hand, note that

⌃kk =
f
0

2n
p
1 + ↵

✓
1 � ↵

1 + ↵

◆
, (4.52)

and that ⌃kk 6= �0
kk at k = n

p
↵.

We correct this deficiency by adding the term aD↵At to (4.44) and its linear counterpart
(4.47), where a is a constant chosen to match the improved �0

kk to ⌃kk. The remodeled form of
(4.47) is h

L + a (4 � ↵L)
i
A

¯t +
if0
2

q
1

1+↵ (4 � ↵L)A = 0 , (4.53)

and dispersion relation corresponding to (4.53) is

� + �0 = � +
f
0

2
p
1 + ↵

✓
k2 � ↵2n

2n + a (k2 � ↵2n)

◆
. (4.54)

Taking derivatives of (4.54) with respect to k reveals that �0
kk = ⌃kk in (4.52) for k = n

p
↵
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when a is

a =
1

4 (1 + ↵)
. (4.55)

We thus improve the dispersion relation and the range of validity of (4.46) by adding D↵At/4(1+
↵). After multiplying by 4(1 + ↵) and using f

0

p
1 + ↵ = �, equation (4.46) becomes

0 =
⇥4 + (4 + 3↵) L
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2J ( x, Ay) � 2J ( y, Ax) +rh · (D↵ rhA)

i

� 2i (1 + ↵)1/2 r · f2
0

N2 (Azr↵ z +  z@zr↵A) .

(4.56)

This improvement to the linear dispersion reflected in (4.46) is analogous to the modifications
made to the 2f

0

equation in chapter 3.A.2. Note that with � = 2f
0

and ↵ = 3, the linear
operator acting on A in (4.56) is

(4 + 13L) @
¯t + 4if

0

(4 � 3L) ; (4.57)

identical to the linear operator in the 2f
0

equation in (3.9). The discussion surrounding 3.10
explains how this remodeling ‘improves the tangency’ of the dispersion relation, since the ap-
proximate dispersion relation matches the exact dispersion relation ⌃(k,n) over a broader
range of wavenumber combinations.

For the final remodeling step, we drop the bar over t̄ to write (4.56) in terms of the single
time-scale t. The result is equation (4.7).

4.4 The quasi-geostrophic evolution of  

A slow evolution equation for  is derived using available potential vorticity which, because
 ⇠ A, follows identically the development in chapter 1.2.3. The result is that  evolves
according to the ordinary quasi-geostrophic equation,

q
¯t + J ( , q) = 0 , with q

def

= (4 + L) , (4.58)

independent of A.
Note that it may be possible to improve (4.58) by including the wave contribution qw to

q. That calculation would require evaluating (2.3) given the leading-order wave field defined
through p̃

0

= e�i�˜tf
0

A + ei�˜tf
0

A⇤. The main question, which has yet to be proven, is whether
including the wave-induced balanced flow through qw in (4.58) leads to a closed and coupled
energy-conserving system.

4.5 Hydrostatic internal waves in barotropic flow

When  =  (x, y, t) is barotropic the slow wave equation in (4.7) is substantially simplified.
Projecting the result onto vertical modes then yields a two-dimensional equation describing the
evolution of each mode�n wave amplitude An. We solve the resulting modal equation for the
mode-one amplitude A

1

for the scattering of a compact wave packet by an isolated eddy and
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for the scattering of a plane wave by two-dimensional turbulence.

4.5.1 Simplifications for barotropic flow

With  =  (x, y, t) barotropic, the quasi-geostrophic equation in (4.58) reduces to the two-
dimensional turbulence equation,

4 t + J ( ,4 ) = 0 , (4.59)

which describes the evolution of the streamfunction  .
We also have  z = 0 and D↵ = 4 , so that the slow wave evolution equation in (4.7)

becomes

0 =
⇥4 + (4 + 3↵) L

⇤
At + 2i�D↵A+ 2(1+↵)

↵

⇥4J ( , A) + J ( ,4A)
⇤

� 2(2+↵)
↵ J (4 , A) + 2i(1+↵)1/2

↵

h
2J ( x, Ay) � 2J ( y, Ax) +rh · (4 rhA)

i
.

(4.60)

To consider the evolution of a wave field with ‘standing’ vertical structure, we decompose A
into the vertical modes hn defined by the eigenproblem

Lhn + 2nhn = 0 , with hnz = 0 at z = �H and 0 , (4.61)

where n is the horizontal wavenumber of vertical mode n, so that

A(x, y, z, t) =
1X

n=1

An(x, y, t)hn(z) , and LA = �
1X

n=1

2nAnhn . (4.62)

Projecting (4.60) onto the vertical modes hn yields an equation for each An,

⇥4 � (4 + 3↵)2n
⇤
Ant + 2i�

�4 + ↵2n
�
An

= 2(2+↵)
↵ J (4 , An) � 2(1+↵)

↵

⇥4J ( , An) + J ( ,4An)
⇤

� 2i(1+↵)1/2

↵

h
2J ( x, Any) � 2J ( y, Anx) +rh · (4 rhAn)

i
.

(4.63)

Equation (4.63) describes the horizontal propagation of the nth vertical mode of A. The arbi-
trary stratification profile N(z) enters into (4.63) via the constant eigenvalue 2n of (4.61).

4.5.2 Scattering by an isolated eddy

We catch a glimpse of dynamics in the slow wave equation by solving equation (4.63) for an
initial value problem that collides a freely propagating mode-one wave packet with an isolated
eddy. The model domain is periodic and square with dimension L = 2000 km and �L/2 <
x, y < L/2. The initial balanced streamfunction  is

 =  e�(x
2
+y2)/2R2

, (4.64)

with R = L/16 = 125 km and amplitude  = R2f
0

Ro ⇡ 1.6 ⇥ 105 m2/s, where Ro = 0.1 is the
Rossby number and f

0

= 10�4 s�1 is the inertial frequency.
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Figure 4.1: Scattering of a wave packet by an isolated eddy. Wave speed is shown at times t = 0, 5, and 10
wave periods. The circular radius R = 125 km and location of the Gaussian eddy is shown in the leftmost plot
with a dashed line. The initial conditions and parameters are given in the text surrounding equations (4.64)
and (4.65).

We initialize the wave field with the mode-one amplitude

A
1

= a eikxe�[(x+L/8)2+y2]/2r2 , (4.65)

where the radius of the wave packet envelope is r = R/2 = 62.5 km. This compact envelope is
chosen to emphasize the strong radial wave scattering induced by the eddy. The amplitude of the
wave field is a = U

0

↵/k
p
1 + ↵ = 3.14⇥103 m2/s, where U

0

= ✏f
0

/k = 0.14 m/s is the maximum
velocity in the wave packet with ✏ = 0.1 and wavenumber k = n

p
↵ ⇡ 6.9 ⇥ 10�5 m�1.

The positive sign of k means the packet propagates to the right and the wavelength of the
wave is 2⇡/k = 90.9 km. The frequency parameter is ↵ = 3 corresponding to � = 2f

0

and
n = ⇡f

0

/NH = 3.9⇥10�5 m�1 chosen as the mode-one wavenumber associated with constant
stratification N = 0.002 s�1 in an ocean of depth H = 4000 m.

Equations (4.59) and (4.63) are solved for the initial conditions (4.64) and (4.65) with a
pseudospectral method using 512 Fourier modes in x and y and the ETDRK4 exponential
time integration scheme described by Cox & Matthews (2002), Kassam & Trefethen (2005),
and Grooms & Julien (2011). The ETDRK4 time-integration scheme is necessary for accurate
integration of the linearly sti↵ equation (4.63), though stable integration still seems to require
a small time-step around 1/100th of the wave period 2⇡/�. 16th-order hyperdissipation of the
form in (3.93) through (3.95) with ⌫ = 1052 m32/s is added to the right side of both (4.59)
and (4.63). The need for high-order hyperdissipation appears to be a peculiar property of the
hydrostatic wave equation.

The encounter between packet and eddy is shown in figure 4.1, where the wave speedp
ũ2 + ṽ2 =

p
1 + 2↵|rhA1

|/↵ is plotted at t = 0, 5, and 10 wave periods. The slow wave
equation describes the radial scattering of the packet with spiraling phase lines emerging from
the competition between dispersive propagation and radial eddy advection. Wave energy is
transiently focused near the eddy core at t = 5 wave periods, and possibly spurious small scales
appear wrapped around the eddy core at t = 10 wave periods. The results in figure 4.1 resemble
the scattering solutions found by Dunphy & Lamb (2014) for a similar problem with a forced,
laterally-uniform wave and baroclinic eddy.
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Table 4.1: Properties of the initial two-dimensional turbulent fields used in the scattering problems of chapter
4.5.3. L̄ defined in (4.68) estimates the flow’s energy-containing length-scale. All turbulent fields were generated
on a 2562 grid by integrating (4.67) for either 500 or 1000 wave periods corresponding roughly to 150 or 300
eddy turnover times.

n
0

, n
1

L̄ (km) max (|r |) max (q/f
0

) rms (q/f
0

) max(|r |)k/f
0

Figure

3, 7 53.8 0.26 0.11 0.018 0.085 4.2

8, 12 24.2 0.15 0.10 0.017 0.052 4.5

8, 12 30.9 0.25 0.21 0.027 0.084 4.3

1, 3 156.5 0.26 0.057 0.011 0.088 4.4

1, 3 156.4 0.52 0.12 0.022 0.18 4.6

4.5.3 Scattering by two-dimensional turbulence

Next, we conduct a more thorough exploration of wave scattering by inserting a plane wave into
a two-dimensional turbulent vorticity field in a periodic square domain. This scenario inten-
tionally evokes the shallow-water simulations by Ward & Dewar (2010) to enable comparison
and demonstrate the ability of our slow wave equation to qualitatively reproduce their results.
The wave field is initialized as an infinite right-going plane wave,

An = a ei
˜kx , (4.66)

with wavenumber k̃ = n
p
↵ ⇡ 6.8 ⇥ 10�5 m�1 of a wave with � = 2f

0

and thus ↵ = 3,
wavelength 2⇡/k ⇡ 92.4 km, and mode-one wavenumber n = ⇡f

0

/NH = 3.9 ⇥ 10�5 m�1

corresponding to inertial frequency f
0

= 10�4 s�1, constant buoyancy frequency N = 0.002 s�1,
and ocean depth H = 4000m. The domain is square and sized with side-length L = 32⇡/k to
fit 16 wavelengths.

The initial vorticity field is generated by preliminary integration of a semi-random stream-
function similar to (3.140),

 (x, y, 0) =  
0

 
n1X

n=n0

⇣
kn
kn0

⌘�1

cos (knx+Xn)

! 
n1X

n=n0

⇣
kn
kn0

⌘�1

cos (kny + Yn)

!
, (4.67)

where  
0

is the magnitude of the initial streamfunction, Xn and Yn are random phases, kn =
2⇡n/L, and {n

0

, n
1

} determine the scales in the vorticity field after the preliminary integration
stage of around 150 eddy turnover times, or either 500 or 1000 wave periods depending on the
initial Rossby number.

A useful measure of the characteristic scale of the turbulent field is the ‘energy-containing
length-scale’ L̄,

L̄
def

=

s
Ê dk d`s p

k2 + `2Ê dk d`
, where Ê(k, `)

def

=
�
k2 + `2

� | ̂|2 , (4.68)
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Figure 4.2: Scattering of a plane wave by turbulence with intermediate length-scale L̄ = 53.8 km. The vorticity
field q and its spectra |q̂| are shown at left top and bottom t = 5 wave periods after deposition of the plane
wave. The evolution of the plane wave horizontal speed |u

h

| and spectra |Â
n

| are shown at t = 5, 25, and 125
wave periods. The spectral components of q outside the circle

p
k2 + `2 = 2k̃ = 32 plotted at bottom left do

not interact with A
n

. Spectra on bottom are normalized by the sum of all spectral components and multiplied
by 10 for |q̂| and by 2 for |Â1| at t = 125 wave periods for contrast. Some properties of the initial vorticity field
are given in table 4.1.

is the kinetic energy spectra of  and k and ` are the x and y Fourier wavenumbers. We
vary the length-scales present in the initial turbulent field by choosing {n

0

, n
1

} = {1, 3}, {3, 7},
which generates turbulent fields with L̄ = 156.4, 53.8, and 30.9 km, respectively. These length
scales are all larger than the characteristic wave scale 1/k̃ ⇡ 14 km, and so permit only an
incomplete exploration of the role played by the length-scale ratio 1/k̃L̄. This ratio determines
the relative importance of advective and refractive nonlinearities in scattering the waves, which
we conservatively measure with

✏a
def

=
max(|r |)k

f
0

and Ro
def

=
max (4 )

f
0

, (4.69)

respectively. With small 1/kL̄, advection and ✏a dominates and the simpler WKB-type ray
tracing approach to wave scattering employed by Rainville & Pinkel (2006), for example, is valid.
Large 1/kL̄, which is not accessed by the simulations presented here, implies the dominance of
refraction. We save a more thorough exploration of the refraction-dominated scattering regime
for future work with higher-resolution simulations able to resolve small-scale two-dimensional
turbulence.

Because advection dominates the dynamics in our cases, we choose the magnitude of the
initial streamfunction  

0

to generate turbulent fields with roughly similar ✏a of around 0.085.
In consequence the fields have Ro = 0.056, 0.11, and 0.21 in the small, intermediate, and large-
scale cases. We also include two additional simulations for the small and large-scale cases with
Ro ⇡ 0.1, similar to the intermediate-scale case, but with ✏a = 0.052 and 0.18, respectively.
More properties of the initial turbulent vorticity fields are given in table 4.1.
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Figure 4.3: Scattering of a plane wave by 2D turbulence with small length scale L̄ = 30.9 km, similar to figure
4.2. The turbulence is more vigorous than the intermediate-scale case in figure 4.2 but the advective wave-
scattering nonlinearity ✏

a

= 0.084 is roughly the same. Some properties of the initial vorticity field are given in
table 4.1.

Figure 4.4: Scattering of a plane wave by 2D turbulence with large length scale L̄ = 156.5 km, similar to
figure 4.2. The turbulence is less vigorous than the intermediate-scale case in figure 4.2 but the advective wave-
scattering nonlinearity ✏

a

= 0.088 is roughly the same. Some properties of the initial vorticity field are given in
table 4.1.



Gregory LeClaire Wagner 95

The evolution of the wave field scattered by turbulence of intermediate length-scale L̄ ⇡ 53.8
km is shown in figure 4.2. The top right panel plots the vorticity field at t = 5 wave periods and
the three top snapshots to the left show the evolution of horizontal wave speed |ũh| =

p
ũ2 + ṽ2.

The bottom right panel plots the spectra of q versus the Fourier wavenumbers k and ` normalized
by 2⇡/L and the left three bottom snapshots show the evolution of the spectra of An. Because
An is initially an infinite plane wave in the horizontal given by (4.66), its initial spectra is
concentrated at (k, `) = (k̃, 0). Scattering by turbulence subsequently spreads energy angularly
around the annulus k̃ ⇡ p

k2 + `2. The smearing of energy to wavevectors slightly longer and
shorter than k̃ reflects near-resonant evolution that cannot be described by a strict resonance
interaction theory limiting attention to modes that exactly satisfy the �-frequency dispersion
relation.

Figures 4.3 and 4.4 show snapshots of the same wave field scattered by turbulent fields
with scales L̄ = 24.2 km and 156.4 meters, respectively and similar advective nonlinearity
measured by ✏a. A comparison of wave spectra in the first snapshot after t = 5 wave periods
is revealing: as the scale of the turbulence decreases, wave energy is scattered farther around
the annulus. This phenomenon is well-explained in resonant interaction theory: for example,
scattering of energy from the wavevector (k̃, 0) to the opposite side of the annulus at (�k̃, 0)
requires significant turbulent energy at (�2k̃, 0). With little energy at large wavenumbers in the
case of large-scale turbulence, the scattering proceeds more incrementally around the annulus.
We also tentatively observe that near-resonance interactions appear to be more important at
short times and less important at long times as the scale of the turbulence decreases.

Figures 4.5 and 4.6 show wave scattering by small- and large-scale turbulence with Ro ⇡ 0.1
and thus similar to the intermediate-scale case plotted in figure 4.2. Because of the di↵ering
scales of turbulence, the advective nonlinearities for small and large-scale cases is ✏a = 0.052
and 0.18, respectively. In the small-scale case the smaller advective nonlinearity appears to
scatter the wave field more weakly, though the actual di↵erence between figure 4.5 and 4.3 is
di�cult to gauge without a more quantitative estimate of the scattering rate. In the large-
scale case, however, the di↵erence is dramatic, and may reflect a failure of the reduced model.
In particular, energy is spread into small-scales relatively far from the �-frequency dispersion
relation. The spreading could still be physical, however. Further insight awaits a comparison
with the fully nonlinear Boussinesq equations.

4.6 Discussion

The slow hydrostatic wave equation in (4.7) is a model for the slow evolution of hydrostatic
intertia-gravity waves in quasi-geostrophic flow that answers Ponte & Klein (2015)’s call for a
reduced-order description of low-mode internal tides. This slow wave equation is the general-
frequency counterpart to Young & Ben Jelloul (1997)’s equation for the linearized and slow
evolution of near-inertial waves. In the language of triadic interaction theory, our slow wave
equation permits wave evolution due both to exactly resonant and near-resonant interactions
between waves and flow. The allowance of near-resonance means our spatially-formulated equa-
tion is more general than the slow evolution equation derived by Ward & Dewar (2010), which
relies on a spectral normal mode decomposition and the application of a strict resonance con-
dition to obtain the slow evolution of each spectral component.

Much work remains. The most pressing issue is confirmation that the model possess an
adiabatic invariant ensuring the conservation of wave energy or action. Especially given the
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Figure 4.5: Scattering of a plane wave by weak 2D turbulence with small length scale L̄ = 24.2 km. Similar to
figure 4.3 but with less vigorous turbulence and weaker advective wave-scattering nonlinearity.

Figure 4.6: Scattering of a plane wave by strong 2D turbulence with large length scale L̄ = 156.4 km. Similar
to figure 4.6 but with more vigorous turbulence and strong advective wave-scattering nonlinearity. It is unclear
whether the significant smearing of energy around k̃ =

p
k2 + `2 by t = 125 wave periods is physical or represents

a failure of the reduced model.
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crude and approximate method of derivation, the validity of the model should be checked
against solutions to the fully nonlinear Boussinesq equations.

A natural question is whether equation (4.7) can be coupled to the wave-averaged quasi-
geostrophic equation in (2.1) through (2.3) to yield a closed model for the coupled evolution of
internal tides and quasi-geostrophic flow. It is possible such a model follows merely by evaluating
qw in (2.3) given a wave field of the form p̃ = e�i�tA + ei�tA⇤, and ensuring the conservation
of some form of wave action and energy analogous to those in the three-component model of
chapter 3. Such a coupled model has the potential to yield valuable insights about whether the
internal tide alters the evolution or extracts energy from oceanic mesoscale flows.

Finally, the successful derivation of (4.7) suggests that models for the dynamics wave-
wave nonlinear interaction in heterogeneous quasi-geostrophic flow are also within reach. One
potentially fruitful three-component model would add the second harmonic of the tide as the
second harmonic of the near-inertial field was included in the three-component model of chapter
3. It is likely that the interaction of the internal tide with quasi-geostrophic flow enhances
this nonlinear primary-harmonic interaction. Another interesting possibility is to combine the
results of chapter 3 and chapter 4 to produce a four-component model describing the interaction
of quasi-geostrophic flow with one near-inertial component with frequency near f

0

and velocity
amplitude LA, and two general hydrostatic components with frequencies near � and �+f

0

and
pressure amplitudes f

0

B and f
0

C. This model would require a potentially arduous evaluation
of the terms on the right of (4.9) that contribute to each amplitude equation, but could provide
insight into how quasi-geostrophic flow facilitates energy transfer between near-inertial waves
and internal tides, the two dominant modes of oceanic internal wave motion.

4.A The part of RHS proportional to e�i�t̃

In this appendix we parse the right-hand side of (4.42), or ‘RHS’, for its part proportional to
e�i�t. The RHS is

RHS = �f 2

0

S · (u ·r)u � @z
f 2

0

N2

�
@2
˜t + f 2

0

�
(u ·rpz) , (4.70)

where S = (@x x̂ + @y ŷ) @
˜t + f

0

r? is the leading-order vector operator with a second-order
derivative. In (4.70) and hereafter we drop the subscripts ‘0’ denoting leading-order fields for
clarity. All fields are leading-order, so that (u

0

, p
0

) = (u, p).

4.A.1 Preliminaries

The leading-order pressure p is

p = f
0

⇣
 + e�i�˜tA+ ei�

˜tA⇤
⌘
, (4.71)

and the velocity u is

u = r? � e�i�˜t

↵f
0

(i�r↵ + f
0

r?)A+
ei�˜t

↵f
0

(i�r↵ � f
0

r?)A
⇤ , (4.72)
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where r? and r↵ are defined in (4.4). The first-order advective derivative is

u ·r = J ( , ·) � e�i�˜t

↵f
0

⇥
f
0

J (A, ·) + i�r↵A ·r
⇤
+ cc . (4.73)

Lastly, the fact that r? ·r↵ = 0 eases the evaluation of S · u, which gives

S · u = f
0

4 + ei�tf
0

4A⇤ � 1

↵f0

�
�2 + f 2

0

�
e�i�t4A . (4.74)

4.A.2 Some strenuous bookkeeping

We tackle the first term of (4.70) first, which expands into

f 2

0

S · (u ·r)u = f 2

0

(u ·r) (S · u) + f 2

0

(uxt � f
0

uy) ·ru+ f 2

0

(uyt + f
0

ux) ·rv

+ f 2

0

ux ·rut + f 2

0

uy ·rvt + f 2

0

ut ·r (ux + vy)
(4.75)

Using (4.73) and (4.74) and multiplying by ei↵t↵/f
0

yields

ei�t↵f
0

(u ·r) (S · u) = � ��2 + f 2

0

�
J ( ,4A) � f 2

0

J (A,4 )

� i�f
0

r↵A ·r4 + · · · , (4.76)

where throughout this subappendix the · · · stand for terms that do not contribute to the part
of RHS proportional to e�i�t. The next two terms are somewhat more involved,

ei�t↵f
0

(uxt � f
0

uy) ·ru = 2i�f
0

J ( y, Ax)

+ �2r↵Ax ·r y � i�f
0

r↵Ay ·r y + · · · , (4.77)

and

ei�t↵f
0

(uyt + f
0

ux) ·rv = �2i�f
0

J ( x, Ay)

� �2r↵Ay ·r x � i�f
0

r↵Ax ·r x + · · · . (4.78)

The fourth and fifth terms in (4.75) are

ei�t↵f
0

�
ux ·rut + uy ·rvt

�
= ��2J ( x, Ax) � �2J ( y, Ay)

+ i�f
0

J ( y, Ax) � i�f
0

J ( x, Ay) .
(4.79)
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The sixth term in (4.75) has no part proportional to e�i�t because both ut and ux + vy = �wz

have oscillate with frequency �. At last, the second term in (4.70) is

ei�t@z
↵f

0

N2

�
@2t + f 2

0

�
(u ·rpz)

= �@z↵
2f 2

0

N2

h
f 2

0

J ( , Az) � ↵�1f 2

0

J (A, z) � i↵�1�f
0

r↵A ·r z

i
+ · · · ,

(4.80)

= ��2

↵f 2

0

N2

J ( z, Az) � ↵2f 2

0

J ( ,LA) � ↵f 2

0

J (L , A)

+ i�f
0

@z
⇣
r↵A · ↵f

2
0

N2 @zr 
⌘
+ · · · .

(4.81)

The extra factor of �↵f 2

0

comes from the relation �↵f 2

0

= ��2 + f 2

0

. In passing from (4.80) to
(4.81) we employ the Jacobian identity J (A, z) = �J ( z, A), distribute the z-derivative, and
use ↵ + 1 = �2/f 2

0

.
We next collect the contributions to ↵RHS/f

0

in (4.76)+(4.77)+(4.78)+(4.81) and organize
them according to whether they are multiplied by �2, f 2

0

, or i�f
0

. We observe a fortuitous
cancellation within the collection

r↵Ax ·r y � r↵Ay ·r x � ↵f 2

0

N2

J ( z, Az) = �J ( x, Ax) � J ( y, Ay) , (4.82)

which, along with the identity

4J ( , A) = J (4 , A) + J ( ,4A) + 2J ( x, Ax) + 2J ( y, Ay) , (4.83)

permits the simplification of terms proportional to �2,

1

�2

T�2 = �J ( ,4A) � J ( x, Ax) � J ( y, Ay)

+r↵Ax ·r y � r↵Ay ·r x � ↵f 2

0

N2

J ( z, Az) ,
(4.84)

= �4J ( , A) + J (4 , A) . (4.85)

Next, we use the leading-order relation 4A = ↵LA and the notation D↵ = 4 � ↵L to simplify
terms proportional to f 2

0

:

1

f 2

0

Tf2
0
= �J ( ,4A) + J (4 , A) � ↵2J ( ,LA) � ↵J (L , A) , (4.86)

= � (1 + ↵) J ( ,4A) + J (D↵ , A) , (4.87)

Because 1 + ↵ = �2/f 2

0

, the first term on the right of (4.87) is ultimately proportional to �2.
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Finally, the terms proportional to i�f
0

are

1

i�f
0

T�f0 = 3J ( y, Ax) � 3J ( x, Ay)

� r↵A ·r4 � r↵Ax ·r x � r↵Ay ·r y

+ @z
⇣
r↵A · f2

0
↵N2@zr 

⌘
,

(4.88)

Some strenuous rearrangement and combination of terms leads eventually to the identity

r↵A ·r4 +r↵Ax ·r x +r↵Ay ·r y � @z
⇣
r↵A · ↵f

2
0

N2 @zr 
⌘

= J ( y, Ax) � J ( x, Ay) + @x (AxD↵ ) + @y (AyD↵ )

� r · ↵f
2
0

N2 (Azr↵ z +  z@zr↵A) .

(4.89)

Using (4.89) to simplify (4.88) yields Thus

1

i�f
0

T�f0 = 2J ( y, Ax) � 2J ( x, Ay)

� rh · (D↵ rh) +r · ↵f
2
0

N2 (Azr↵ z +  z@zr↵A) ,

(4.90)

where rh
def

= @x x̂ + @y ŷ.

4.A.3 The final tally

With (4.85), (4.87), and (4.90), we have all the pieces needed to construct RHS, and find

ei�tRHS = �f0
↵

⇣
T�2 + Tf2

0
+ T�f0

⌘
+ · · · , (4.91)

= �2f0
↵

h
4J ( , A) + J ( ,4A) � J (4 , A)

i
� f3

0
↵ J (D↵ , A)

+ i�f2
0

↵

h
2J ( x, Ay) � 2J ( y, Ax) +rh · (D↵ rh)

i

� i�f 2

0

r · f2
0

N2 (Azr↵ z +  z@zr↵A) + · · · .

(4.92)



Appendix A

The Boussinesq equations and ‘wave
operator form’

Writing the Boussinesq equations in di↵erent ways illuminates important aspects of Boussinesq
physics. Particularly useful in this dissertation is the ‘wave operator form’, in which terms are
rearranged until a linear wave operator is obtained acting on either w in the non-hydrostatic
equations, or p in the hydrostatic equations. In this view the nonlinear parts of the resulting
equation can be viewed either as a source of waves in the case of spontaneous generation, or
as the agent of weakly nonlinear evolution for the leading-order linear solution. We begin the
appendix by writing down the Boussinesq equations in an Earth-relevant rotating frame.

In a frame that rotates with angular velocity ⌦ with the components

2⌦ = 2⌦ sin�
| {z }

def
= fv

ẑ + 2⌦ cos�
| {z }

def
= fh

ŷ , (A.1)

the Boussinesq equations become

Dtu � fvv + fhw + px = 0 , (A.2)

Dtv + fvu+ py = 0 , (A.3)

Dtw � b+ fhu+ pz = 0 , (A.4)

Dtb+ wN2 = 0 , (A.5)

ux + vy + wz = 0 . (A.6)

At midlatitudes fv ⇠ fh. For motions with horizontal scale L and vertical scale H, the vertical
velocity is small and scales with w ⇠ H

L u. For motions with time-scales fv ⇠ fh, this means
that wt/fhu ⇠ H/L is small, and that wt and fhu can only be consistently neglected at the
same time when the hydrostatic balance pz ⇠ b dominates the vertical momentum equation.
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A.1 In the non-hydrostatic Boussinesq equations

With fh = 0, fv = f
0

constant and expanding Dt = @t + u · r, the Boussinesq equations in
(1.7) through (1.11) become

ut � f
0

v + px = �u ·ru , (A.7)

vt + f
0

u+ py = �u ·rv , (A.8)

wt � b+ pz = �u ·rw , (A.9)

bt + wN2 = �u ·rb , (A.10)

ux + vy + wz = 0 . (A.11)

We note that the assumption fh = 0 while retaining Dtw in the vertical momentum equation
(A.9) is not really consistent for the long-time evolution of waves except perhaps at polar
latitudes.

To arrive at the wave operator form we first form three intermediate equations: the ‘oscilla-
tion equation’, the ‘divergence equation’, and the ‘vertical vorticity’ equation. The oscillation
equations follows by adding @t(A.9) to (A.10),

wtt + wN2 + pzt = �
h
@t (u ·rw) + u ·rb

i
. (A.12)

The divergence equation follows from adding @x(A.7) to @y(A.8) and using ux + vy = �wz,

wzt + f
0

! � 4p = @x (u ·ru) + @y (u ·rv) , (A.13)

where !
def

= vx � uy is the vertical component of vorticity, ! = r ⇥ u, and 4 def

= @2x + @2y is
the horizontal Laplacian. The vertical vorticity equation is formed by subtracting @y(A.7) from
@x(A.8),

!t � f
0

wz = �@x (u ·rv) + @y (u ·ru) . (A.14)

Two more steps yield the wave operator form. First, f
0

@z(A.14) subtracted from @z@t(A.13)
yields

�
@2t + f 2

0

�
wzz � 4pzt = @z (@x@t + f

0

@y) (u ·ru) + @z (@y@t � f
0

@x) (u ·rv) . (A.15)

Adding this to 4(A.12) then gives

h
@2t
�4 + @2z

�
+ f 2

0

@2z +N24
i
w = @z (@tr+ f

0

r?) · (u ·r)u � 4 (u ·rb) , (A.16)

where r?
def

= �@y x̂ + @x ŷ. Equation (A.16) is the Boussinesq formulation that we call ‘wave
operator form’.

A.2 In the hydrostatic Boussinesq equations

The hydrostatic Boussinesq equations are a simplification of equations (A.7) through (A.11)
justified when vertical accelerations are small compared to buoyancy forces. The smallness of
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Dtw permits the reduction of (A.9) to
pz = b , (A.17)

or hydrostatic balance. Equations (A.7) through (A.11) then become

ut � f
0

v + px = �u ·ru , (A.18)

vt + f
0

u+ py = �u ·rv , (A.19)

pz = b , (A.20)

bt + wN2 = �u ·rb , (A.21)

ux + vy + wz = 0 . (A.22)

The hydrostatic version of (A.16) is obtained by repeating the derivation in chapter A.1 with
wt and u ·rw set to zero,

h �
@2t + f 2

0

�
@2z +N24

i
w = @z (@trh + f

0

r?) · (u ·r)u � 4 (u ·rb) , (A.23)

where
rh

def

= @x x̂ + @y ŷ (A.24)

has the horizontal components of r.

A.2.1 An alternative hydrostatic wave operator form

Equations (A.18) through (A.22) have an alternative wave operator formulation which is ex-
pressed in terms of pressure p rather than vertical velocity w. To obtain this we first add
@t(A.20) to @zN�2(A.21) and use (A.22) to find

ux + vy = �wz , (A.25)

= f�2

0

Lpt + @z
1

N2

(u ·rpz) . (A.26)

Subtracting @y(A.18) from @x(A.19) and using (A.26) and multiplying the result by f 3

0

yields
the vertical vorticity equation,

f 3

0

!t + f 2

0

Lpt = �f 3

0

@x (u ·rv) + f 3

0

@y (u ·ru) � f 2

0

@z
f 2

0

N2

(u ·rpz) . (A.27)

Next, adding @x(A.18) to @y(A.19) using (A.26) and operating on the result with f 2

0

@t leads to

@t
�
@2t L + f 2

0

4�p+ @z@
2

t

f 2

0

N2

(u ·rpz) � f 3

0

!t = �f 2

0

@t@x (u ·ru) � f 2

0

@t@y (u ·rv) . (A.28)

Adding (A.28) to (A.27) eliminates f 3

0

!t and thus produces the wave operator form of (A.18)
through (A.22),

@t
h
@2t L + f 2

0

(4 + L)
i
p = �f 2

0

(@trh + f
0

r?) · (u ·r)u � @z
f 2

0

N2

�
@2t + f 2

0

�
(u ·rpz) , (A.29)
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where rh is the horizontal gradient defined in (A.24). The definition of the vector operator

S
def

= @trh + f
0

r? (A.30)

o↵ers slight convenience for expressing (A.29).



Appendix B

Shallow water analogs

The rotating shallow water equations describe the depth-averaged dynamics of a rotating fluid
with a free surface and small aspect ratios. Shallow water dynamics are a useful two-dimensional
proxy model for rotating and stratified fluid flow and include both wave and quasi-geostrophic
motions analogous to those encountered in three-dimensions. In particular, the linear hydro-
static Boussinesq equations can be reduced to a set of coupled shallow water equations in
the small-amplitude limit. The principle attraction of the shallow water model is its two-
dimensionality, which facilitates numerical computation and algebraic manipulations over its
three-dimensional Boussinesq counterpart. In this appendix we report results for derivations
and models analogous to those developed in this dissertation.

B.1 The shallow water equations

With velocity u = (u, v), layer height H(x, t) = H (1 + h), gravitational acceleration g and
inertial frequency f , the shallow water equations are

Dtu � fv + c2hx = 0 , (B.1)

Dtv + fu+ c2hy = 0 , (B.2)

ht +r · (hu) = �r · u , (B.3)

where Dt
def

= @t + u ·r is the material derivative and c =
p
gH is the phase speed of a high-

frequency, small-amplitude shallow water gravity wave. When the inertial frequency f = f
0

is constant, a modicum of algebra puts equations (B.1) through (B.3) in their wave-operator
form,

@t
h
@2t + f 2

0

� c24
i
h = S · (u ·r)u � �@2t + f 2

0

�
r · (hu) , (B.4)

where the two operators 4 and S are

4 def

= @2x + @2y , and S
def

=
h
@tr+ f

0

��@y x̂ + @x ŷ| {z }
def
=r?

�i
. (B.5)
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The shallow water Ertel potential vorticity is

⇧
def

=
!a

H =
f + !

H(1 + h)
. (B.6)

Equations (B.1) through (B.3) imply that ⇧ is materially conserved, so that

Dt⇧ = 0 . (B.7)

B.1.1 Small-amplitude shallow water waves

Linear shallow water waves are described by the left side of (B.4),

@t
⇥
@2t + f 2

0

� c24⇤h = 0 . (B.8)

Assuming that h ⇠ eikx+i`y�i�t yields the shallow water dispersion relation between frequency
� and wavenumbers k and `,

�2 = f 2

0

+ c2
�
k2 + `2

�
. (B.9)

Thus as wavenumbers decrease and wavelengths increase rotating shallow water waves become
increasingly inertial, while high frequency waves are mostly gravitational.

B.1.2 Shallow water quasi-geostrophic flow

Small-amplitude shallow water quasi-geostrophic flow is described by

qt + J ( , q) = 0 , with q
def

=
⇣
4 � f2

0
c2

⌘
 . (B.10)

The ratio f 2

0

/c2 = f 2

0

/gH has units of 1/length2 and is analogous to the mode-wise Rossby
‘wavenumber’ encountered in three-dimensional Boussinesq quasi-geostrophy.

B.2 A slow evolution equation for rotating shallow water
waves

Here we develop a shallow water analog to the tide-QG model developed in chapter 4 which
is substantially simpler and also two-dimensional. We use constant inertial frequency f = f

0

throughout.

B.2.1 Non-dimensionalization and two-timing

We use f
0

, U , and L to non-dimensionalize t, u, and x respectively. The height h is already
non-dimensional by definition. Two key parameters are

✏
def

=
U

f
0

L
and Bu

def

=

✓
c

f
0

L

◆
2

. (B.11)
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The parameter ✏ is both a Rossby number and wave amplitude parameter and Bu is the Burger
number. We assume Bu ⇡ 1 and ✏ ⌧ 1.

Under these scalings and assumptions the shallow water equations in (B.1) through (B.3)
become

ut � v + hx = �✏u ·ru , (B.12)

vt + u+ hy = �✏u ·rv , (B.13)

ht +r · u = �✏r · (hu) , (B.14)

while (B.4) takes the form

@t
⇥
@2t + 1 � 4⇤h = ✏

h
S · (u ·r)u � �@2t + 1

�
r · (hu)

i
. (B.15)

Subjecting (B.15) to the two-time expansion

@t 7! @
˜t + ✏@

¯t (B.16)

produces

(@
˜t + ✏@

¯t)
⇥
@2
˜t + 2✏@

¯t@˜t + ✏2@2
¯t + 1 � 4⇤h = ✏

h
S · (u ·r)u � ⇥(@

˜t + ✏@⌧ )
2 + 1

⇤
r · (hu)

i
.

(B.17)

B.2.2 The asymptotic expansion

We expand all variables in powers of ✏, so that

h = h
0

+ ✏h
1

+ · · · , and u = u

0

+ ✏u
1

+ · · · , (B.18)

and solve both (B.1) through (B.3) and (B.15) order-by-order. We restore dimensionality for
clarity.

The leading-order shallow water system is

u
0t � f

0

v
0

+ c2h
0x = 0 , (B.19)

v
0t + f

0

u
0

+ c2h
0y = 0 , (B.20)

h
0t +r · u

0

= 0 , (B.21)

and the leading-order terms in (B.15) are

@t
⇥
@2t + f 2

0

� c24⇤h
0

= 0 . (B.22)

This equation has both quasi-geostrophic and wave solutions. We assume that due to the nature
of initial conditions or hypothetical forcing the solution can be expressed as

h
0

=
f
0

c2

⇣
 + e�i�tA+ ei�tA⇤

⌘
. (B.23)

(B.23) is the superposition of a slowly-evolving streamfunction  with a rapidly oscillating,
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�-frequency wave field modulated by the slowly-evolving amplitude A. (B.22) implies that A
satisfies

i�f
0

⇣
4 +

�2 � f 2

0

c2

⌘
A = 0 , (B.24)

We simplify the presentation by defining the frequency parameter

↵
def

=
�2 � f 2

0

f 2

0

. (B.25)

and the ‘dispersion operator’

D↵
def

= 4 +
↵f 2

0

c2
, (B.26)

so that (B.24) becomes just i�f
0

D↵A = 0. Notice that the linear dispersion relation in (B.9)
implies that the assumption Bu = (c/f

0

L)2 = O(1) requires ↵ = O(1).
The leading-order fields u

0

and v
0

are found from h
0

by merging the combinations @t(B.19)+
f
0

(B.20) and @t(B.20) � f
0

(B.19),

�
@2t + f 2

0

�
u

0

= �c2 (@tr � f
0

r?)h0

, (B.27)

where r? = (�@y, @x) as defined in (B.5). We solve (B.27) for u

0

using h
0

in (B.23). In
component form u

0

is

0

@u
0

v
0

1

A =

0

@� y

 x

1

A� 1

↵f
0

0

@i�@x � f
0

@y

i�@y + f
0

@x

1

A e�i�tA+
1

↵f
0

0

@i�@x + f
0

@y

i�@y � f
0

@x

1

A ei�tA⇤ , (B.28)

which is equivalent to the more compact expression

u = r? � (↵f
0

)�1 e�i�t (i�r+r?)A + cc . (B.29)

Using the leading-order equation D↵A = 0, the O(✏) terms in (B.15) reduce to

�2�2f
0

c2
⇥
e�i�tA+ ei�tA⇤⇤+ @t

⇥
@2t + f 2

0

� c24⇤h
1

= S · (u
0

·r)u

0

� �@2t + f 2

0

�
r · (h

0

u

0

) ,
(B.30)

def

= RHS(A, ) , (B.31)

where we introduce the euphemism ‘RHS’. As detailed in chapter 4, our strategy is to isolate
the terms

� 2�2f0
c2 A⌧ = the part of RHS(A, ) proportional to e�i�t (B.32)

from (B.30). We then complete the derivation by adding the leading-order equation, i�f
0

D↵A =
0, to the result. Though this procedure is not rigorously justified, it works because the very
large term i�f

0

D↵A ensures the spectra of A remain close to the �-frequency wave modes of
(B.22), thus rendering the projection of (B.32) onto �-frequency wave modes unnecessary.
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B.2.3 Parsing RHS

The crux of the derivation is to parse RHS in (B.31) for the part proportional to e�i�t. RHS is
given by

RHS = S · (u ·r)u � �@2t + f 2

0

�
r · (hu) . (B.33)

In (B.33) we have dropped the unnecessary subscripts ‘0’ from u and h, which hereafter are
always leading-order.

We first note a few useful properties of the leading-order fields. The advective derivative is

u ·r = J ( , ·) � 1

↵f0

h
f
0

J (A, ·) + i�rA ·r
i
e�i�t + · · · , (B.34)

and the action of two favored vector operators produces

r · u =
i�

↵f
0

⇣
ei�t4A⇤ � e�i�t4A

⌘
. (B.35)

and
S · u = f

0

r? � e�i�t
�
1 + 2↵�1

�
f
0

4A+ ei�tf
0

4A⇤ , (B.36)

the last of which uses �2/f 2

0

+ 1 = ↵ + 2.
Next, we tackle the various parts of RHS one term at a time. Notice that

S · (u ·r)u = (u ·r) (S · u) + (uxt � f
0

uy) ·ru+ (uyt + f
0

ux) ·rv ,

+ ux ·rut + uy ·rvt + ut ·r (ux + vy)
(B.37)

After multiplication by ei�t↵f 2

0

/c2, the first term in (B.37) is

ei�t↵f
0

(u ·r) (S · u) = � ��2 + f 2

0

�
J ( ,4A)� i�f

0

rA ·r4 � f 2

0

J (A,4 ) + · · · , (B.38)

where the · · · indicate unsteady terms which are thus not proportional to e�i�t in (B.33). Next
we have

ei�t↵f
0

(uxt � f
0

uy) ·ru = 2i�f
0

J ( y, Ax) + �2rAx ·r y � i�f
0

rAy ·r y + · · · , (B.39)

and

ei�t↵f
0

(uyt + f
0

ux) ·rv = �2i�f
0

J ( x, Ay) � �2rAy ·r x � i�f
0

rAx ·r x + · · · . (B.40)

The third and fourth term in (B.37) are

ei�t↵f
0

�
ux ·rut + uy ·rvt

�
= ��2J ( x, Ax) � �2J ( y, Ay)

+ i�f
0

J ( y, Ax) � i�f
0

J ( x, Ay) .
(B.41)

The final term does not contribute any terms proportional to e�i�t due to the t-derivatives on
both ut and ux + vy = �ht. The final h-dependent term is

�ei�t↵f
0

�
@2t + f 2

0

�
r · (hu) = �ei�t↵f

0

�
@2t + f 2

0

�
(u ·rh+ hr · u) , (B.42)

= �2J
⇣

f2
0

↵c2 , A
⌘

� i�f
0

f2
0

↵c2 (rA ·r +  4A) . (B.43)
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We now collect terms and simplify. Notice that

4J ( , A) = J (4 , A) + J ( ,4A) + 2J ( x, Ax) + 2J ( y, Ay) , (B.44)

and
rAy ·r x � rAx ·r y = J ( x, Ax) + J ( y, Ay) . (B.45)

Using these two identities along with the leading-order equation 4A = � (f 2

0

/↵c2)A, we sim-
plify the terms proportional to �2 into

1

�2

T�2 = �J ( ,4A) +rAx ·r y � rAy ·r x +
f2
0

↵c2J ( , A)

� J ( x, Ax) � J ( y, Ay) ,
(B.46)

= �4J ( , A) + J (4 , A) � J ( ,4A) . (B.47)

Note that the final two terms can in principle be combined into J (D↵ , A). Yet comparing this
result with the Boussinesq wave equation in (4.7) suggests this is incorrect: the factor f 2

0

/↵c2

‘belongs’ to A, rather than  . This intuited fact is likely confirmed by energy conservation laws
for the system, though the conservation laws are not derived in this dissertation. Somewhat
similarly, the terms proportional to f 2

0

are

1

f 2

0

Tf2
0
= �J ( ,4A) � J (A,4 ) , (B.48)

= J (D↵ , A) . (B.49)

Finally, the terms proportional to i�f
0

are

1

i�f
0

T�f0 = 3J ( y, Ax) � 3J ( x, Ay) � rA ·rD↵ ,

� rAx ·r x � rAy ·r y � f2
0

↵c2 4A .

(B.50)

We use the identity

J ( x, Ay) � J ( y, Ax) +rAx ·r x +rAy ·r y = 4 4A , (B.51)

to manipulate T�f0 into

i�f
0

T�f0 = 2J ( y, Ax) � 2J ( x, Ay) � r ·
⇥
D↵ rA

⇤
. (B.52)

Adding these together yields the part of RHS proportional to e�i�t,

↵f
0

RHS = T�2 + Tf2
0
+ T�f0 + · · · , (B.53)

= �2

h
J (4 , A) � J ( ,4A) � 4J ( , A)

i
+ f 2

0

J (D↵ , A)

+ i�f
0

h
2J ( y, Ax) � 2J ( x, Ay) � r · (D↵ rA)

i
+ · · ·

(B.54)
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The hard part is behind us and we are ready to reconstitute. Notice that

�2 + f 2

0

f 2

0

= ↵ + 2 , and
f
0

�
=
q

1

↵+1

(B.55)

B.2.4 Reconstitution

Our vision is to form a reduced slow evolution equation by adding the leading-order equation,
i�f

0

D↵A = 0 in (B.24), to the first-order equation (B.32). Using the part of RHS proportional
to e�i�t identified in (B.54) and multiplying by f

0

/2�2 we find

f2
0
c2 At � if0

2

q
1

↵+1

D↵A � 1

2↵

h
4J ( , A) + J ( ,4A) � J (4 , A)

i

+ 1

2↵(↵+1)

J (D↵ , A) � i

2↵

q
1

↵+1

h
2J ( x, Ay) � 2J ( y, Ax) +r · (D↵ rA)

i
= 0 .

(B.56)

In simplifying equation (B.56) we eliminate � in favor of f
0

and ↵ in the four O(1) coe�-
cients multiplying the dispersive and nonlinear terms. Equation (B.56) involves only slow-time
derivatives and is thus written in terms of the single reconstituted time-derivative @t.

Equation (B.56) is a slow evolution equation analogous to (4.7) for a shallow water wave of
frequency � in a quasi-geostrophic flow with streamfunction  . The parameters are f

0

, �, and
the shallow water phase speed c2, which give ↵ and D↵ through

↵ =
�2 � f 2

0

f 2

0

and D↵ = 4 +
↵f 2

0

c2
. (B.57)

The correspondence of (B.56) to the slow evolution equation for vertical mode n of a hydrostatic
wave field in barotropic quasi-geostrophic flow is exact with n = f

0

/c. However, the shallow
water quasi-geostrophic streamfunction has a slightly richer dynamics than the two-dimensional
turbulent dynamics of barotropic Boussinesq quasi-geostrophic flow.

B.3 Wave-averaged shallow water quasi-geostrophic flow

In this section we introduce the shallow water Available Potential Vorticity and derive an
analog to the wave-averaged quasi-geostrophic equation in (2.1) through (2.3) for rotating,
shallow water flow. The result reached at the end of chapter B.3.2 is

qt + J ( , q) = 0 , with q =
⇣
4 � f2

0
c2

⌘
 + qw , (B.58)

with
qw = J (u, ⇠) + J (v, ⌘) + f

0

h2 � 1

2

f
0

⇠ ·rh , (B.59)

where ⇠, defined through ⇠t = u, is the leading-order linear particle displacement.

B.3.1 Available Potential Vorticity in shallow water

Available Potential Vorticity is the dynamic part of PV which remains after the background PV
carried around by fluid particles is subtracted. In the shallow water equations on the f -plane,
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the background PV is uniform and just f
0

/H; thus, the APV is

Q
def

=
f
0

+ !

H(1 + h)
� f

H
. (B.60)

Because exact PV is materially conserved, we also have

DtQ = 0 . (B.61)

Expanding Q for !/f
0

⇠ h ⌧ 1 yields

HQ = (! � f
0

h)
⇣
1 � h+ h2

⌘
+O

�
!4

�
. (B.62)

B.3.2 The small-amplitude expansion

The wave amplitude parameter and Rossby numbers are

✏
def

=
Ũ

fL
, and Ro

def

=
Ū

f
0

L
= ✏2 , (B.63)

where L is a characteristic length scale and Ũ and Ū = ✏Ũ are the characteristic velocity scales
for the wave and flow respecitvely. We introduce the multiple-time expansion

@t 7! @
˜t + ✏2 @

¯t . (B.64)

Non-dimensionalizing and two-timing equations (1.7)–(1.11) yields

u
˜t � v +Buhx = �✏u ·ru+ ✏2u

¯t , (B.65)

v
˜t + u+Buhy = �✏u ·rv + ✏2v

¯t , (B.66)

h
˜t +r · u = �✏r · (hu) . (B.67)

where we have defined Bu = (c/f
0

L)2. In the following we use the ‘standard’ quasi-geostrophic
assumption that Bu = 1. The APV equation becomes

Q
˜t + ✏u ·rQ+ ✏2Q

¯t = 0 , (B.68)

where APV is
Q = ! � h � ✏h (! � h) +O(✏3) , (B.69)

We expand each variable in ✏, so that, for example

u = u

0

+ ✏u
1

+ ✏2u
2

+ · · · . (B.70)

We perform the expansion in dimensional variables for clarity, using the non-dimensionalization
as a guide.

Leading order. At leading-order, the equations describe shallow water inertia-gravity waves
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and balanced shallow water geostrophic flow:

u
0

˜t � f
0

v
0

+ c2h
0x = 0 , (B.71)

v
0

˜t + f
0

u
0

+ c2h
0y = 0 , (B.72)

h
0

˜t +r · u

0

= 0 . (B.73)

Taking @x(B.72)�@y(B.71) gives

@
˜t (!0

� f
0

h
0

) = Q
0t = 0 , (B.74)

where we indicate that this equation is identical to the leading-order APV equation, Q
0t = 0.

Integrating this equation implies that Q
0

= Q
0

(x, t̄) is a function of slow time only. Here, we
assume that Q

0

= !
0

� f
0

h
0

= 0, which implies the balanced flow is weak and that the solution
to (B.71)–(B.73) consists solely of inertia-gravity waves with no APV signature.

First order. At first-order, we obtain

u
1

˜t � f
0

v
1

+ c2h
1x = � (u

0

·r) u
0

, (B.75)

v
1

˜t + f
0

u
1

+ c2h
1y = � (u

0

·r) v
0

, (B.76)

h
1

˜t +r · u

1

= �r · (h
0

u

0

) . (B.77)

An average over the fast time yields

�fv̄
1

+ c2h̄
1x = �(u

0

·r) u
0

, (B.78)

fū
1

+ c2h̄
1y = �(u

0

·r) v
0

, (B.79)

r · ū

1

= �r ·
�
h
0

u

0

�
. (B.80)

In chapter B.3.3, we show that identities of the O(1) equations allow (B.78) and (B.79) to be
written

v̄
1

+ vS = c2

f0
@x
�
h̄
1

+ 1

2

hS

�
, (B.81)

ū
1

+ uS = � c2

f0
@y
�
h̄
1

+ 1

2

hS

�
, (B.82)

where the superscript ‘S’ denotes the Stokes corrections, defined as

u

S

def

= (⇠
0

·r)u

0

, and hS

def

= ⇠

0

·rh
0

, (B.83)

where ⇠

0

, defined through ⇠

0

˜t
def

= u

0

, is the leading-order and linearized wave-induced particle
displacement. We thus define the Lagrangian-mean streamfunction,

 
def

= c2

f0

�
h̄
1

+ 1

2

hS

�
, (B.84)

such that u

L = r? , withr?
def

= (�@y, @x). We also find through the linear identities in chapter
B.3.3 that

r ·
�
h
0

u

0

�
= 0 , (B.85)
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which together with the fact that r · u

L = 0, implies that r · ū

1

= r · u

S = 0.
The first-order APV equation is

Q
1

˜t = 0 , (B.86)

where

Q
1

= 1

H

⇥
!
1

� f
0

h
1

� h
0

(!
0

� f
0

h
0

)
⇤
, (B.87)

= 1

H

⇥
!
1

� f
0

h
1

⇤
, (B.88)

where we have used the fact that !
0

� f
0

h
0

= 0. Integrating (B.86) implies that Q
1

= Q̄
1

(x, t̄).
We thus find that, somehow,

Q
1

= Q̄
1

= 1

H

⇥
!̄
1

� f
0

h̄
1

⇤
. (B.89)

Defining q
def

= HQ
1

and writing in terms of  gives

q =
⇣
4 � f2

0
c2

⌘
 + 1

2

f
0

hS � vSx + uS

y
| {z }

def
= qw

, (B.90)

In (B.90), we have defined the ‘wave contribution to APV’, qw.

Second order. At second order the APV equation is

Q
2

˜t + u

0

·rQ
1

= 0 . (B.91)

Because Q
1

does not depend on the fast time t, this equation can be integrated to yield

Q
2

= �⇠

0

·rQ
1

+ Q̄
2

. (B.92)

where Q̄
2

is an irrelevant and slowly-evolving function of integration.

Third order. The third-order APV equation is

Q
3

˜t +Q
1

¯t + u

0

·rQ
2

+ u

1

·rQ
1

= 0 . (B.93)

The t̃-average of this equation is

Q
1

¯t + u

0

·rQ
2

+ ū

1

·rQ
1

= 0 , (B.94)

where we recall that Q
1

does not depend on t, so that Q̄
1

= Q
1

. Now note that Q
2

= �⇠ ·rQ
1

,
so that

u

0

·rQ
2

= �u

0

·r (⇠ ·rQ
1

) , (B.95)

= �u
0i@i (⇠0jQ1,j) , (B.96)

= �u
0i⇠0j,iQ1,j � u

0i⇠0jQ1,ij , (B.97)

= u

S ·rQ
1

, (B.98)
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where we have observed that

� u
0i⇠0jQ1,ij = u

0j⇠0iQ1,ij = 0 , (B.99)

and used the fact that �u
0i⇠0j,i = �(u

0

·r) ⇠

0

= (⇠
0

·r)u

0

= u

S. Thus since q = HQ
1

and�
ū

1

+ u

S

�
·rq = u

L ·rq = J ( , q), the O(✏3) APV equation is

q
¯t + J ( , q) = 0 , with q =

⇣
4 � f2

0
c2

⌘
 + qw , (B.100)

with
qw = J (u

0

, ⇠
0

) + J (v
0

, ⌘
0

) + f
0

h2

0

� 1

2

f
0

⇠

0

·rh
0

. (B.101)

In reporting this result we use the single time-scale t and drop subscripts on leading-order
terms.

B.3.3 Identities of the linear shallow water system

For the remainder of chapter B.3 we eschew the subscript ‘0’, assuming that (u, v, h) are un-
steady, wavy solutions to the linear shallow water system,

ut � f
0

v + c2hx = 0 , (B.102)

vt + f
0

u+ c2hy = 0 , (B.103)

ht + (ux + vy) = 0 . (B.104)

Our assumption that the solution to (A.7)–(A.11) are purely waves implies that ! = f
0

h. We
make extensive use of the averaging identity

✓t� = �✓�t . (B.105)

We also use the linearized particle displacement ⇠ = (⇠, ⌘), defined by ⇠t = u. Integrating the
continuity equation yields

h = �⇠x � ⌘y . (B.106)

The energy equation

Using the fact that r · (hu) = u ·rh+ hr · u and r · u = �ht/H, we find

u ·rh = r · (hu) + @t
�

1

2Hh2

�
. (B.107)

Dotting the momentum equations with u and using (B.107) yields

@t
⇣

1

2

u2 + 1

2

v2 + c2

2

h2

⌘
+ c2r · (hu) = 0 . (B.108)

Equation (B.108) is the linear wave energy equation, and its average implies that r ·
�
hu

�
= 0.
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Two virial equations

The virial equation is obtained by dotting the momentum equation with ⇠. Averaging the
result yields

c2hS = u2 + v2 + f
0

(⇠v � ⌘u) , (B.109)

where hS = ⇠ ·rh is the Stokes correction to the height field. Next, we dot the momentum
equation with ⇠x and average the result. After some short manipulations, we find that

c2⇠x ·rh = 1

2

@x
h
u2 + v2 + f

0

(⇠v � ⌘u)
i
, (B.110)

= c2 1
2

hS . (B.111)

Since
hS

x = ⇠x ·rh+ ⇠ ·rhx , (B.112)

we find that
⇠x ·rh = ⇠ ·rhx = 1

2

hS

x . (B.113)

A similar result with y-derivatives implies that

⇠ ·rhy =
1

2

hS

y . (B.114)

The nonlinear momentum terms

Using (A.7), we can rewrite u ·ru as

u ·ru = �⇠ ·rut , (B.115)

= �f
0

⇠ ·rv + c2⇠ ·rhx . (B.116)

We can show that ⇠ ·rhx = 1

2

@x
�
⇠ ·rh

�
, such that

u ·ru = �f
0

vS + 1

2

c2hS

x , (B.117)

where vS and hS are the Stokes corrections to velocity and height defined in (B.83). A similar
calculation shows that

u ·rv = f
0

uS + 1

2

c2hS

y , (B.118)

B.3.4 The wave contribution to APV

The wave contribution to APV is

qw = 1

2

f
0

hS � vSx + uS

y (B.119)



Gregory LeClaire Wagner 117

Notice that the linear equations imply that h = !/f
0

, h = �⇠x � ⌘y, and ! = �f
0

(⇠x + ⌘y).
Because h = !/f

0

, we find

f
0

hS = f
0

⇠ ·rh , (B.120)

= ⇠ ·r! , (B.121)

= !S , (B.122)

so that qw can thus be written
qw = 1

2

!S � vSx + uS

y . (B.123)

Because h = �r · ⇠ = �⇠j,j, we find

hS = ⇠ih,i , (B.124)

= �⇠i⇠j,ij . (B.125)

Then, using

!S � vSx + uS

y = ⇠y ·ru � ⇠x ·rv , (B.126)

= J (u, ⇠) + J (v, ⌘) + f
0

h2 , (B.127)

we find qw takes many forms

qw = !S � vSx + uS

y � 1

2

!S , (B.128)

= J (u, ⇠) + J (v, ⌘) + f
0

h2 � 1

2

f
0

⇠ ·rh , (B.129)

= J (u, ⇠) + J (v, ⌘) + f
0

J (⇠, ⌘)
| {z }

pseudovorticity

+ f
0

h
h2 � ⇠ ·rh � J (⇠, ⌘)

i

| {z }
vortex stretching

+1

2

f
0

⇠ ·rh . (B.130)

The second line in (B.129) is perhaps the simplest expression. On the third line in (B.130)
we identify two parts of qw with kinematic origins: the pseudovorticity, which is a component
of vorticity hidden by the wave average, and a vortex stretching term associated with the
expansion and contraction of wave-averaged fluid elements. These terms have direct Boussinesq
counterparts, as discussed in chapter 2.4, except the extra orphaned term on the far right.
Note that the shallow water pseudovorticity is identical to Boussinesq pseudovorticity so that
its vertical component is given by (2.148) and

ẑ ·r ⇥ p = �J (u, ⇠) � J (v, ⌘) � f
0

J (⇠, ⌘) . (B.131)

On the other hand, the shallow water vortex stretching term associated with the expansion
and contraction of mean fluid elements di↵ers from its Boussinesq counterpart. Following the
discussion in chapter 2.4.3, the wave-averaged volume of a shallow water mean fluid elements
is

V =

Z

F
H(x, y) dÃ(x, y) , (B.132)

where H(x̃) = H (1 + h) is the height of the shallow fluid layer and dA is the (x, y) area of
an infinitesimal fluid element. Evaluating this integral over the area of the mean fluid element
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requires the transformation x̃ 7! x + ✏ ⇠, which implies

H (x + ✏ ⇠) = H (1 + h+ ⇠ ·rh+ ⇠i⇠jh,ij + · · · ) , (B.133)

and

dÃ =

�����
@(x+ ✏⇠, y + ✏⌘)

@(x, y)

����� dĀ = [1 +r · ⇠ + J (⇠, ⌘)] dĀ . (B.134)

The wave-averaged volume of the mean fluid element is therefore

V = H

Z

�
[1 + h+ ⇠ ·rh+ ⇠i⇠jh,ij + · · · ] [1 +r · ⇠ + J (⇠, ⌘)] dĀ , (B.135)

= H

Z

�
1 � h2 + ⇠ ·rh+ J (⇠, ⌘) dĀ+ · · · , (B.136)

⇡ V̄
h
1 � h2 + ⇠ ·rh+ J (⇠, ⌘)

i
. (B.137)

In passing from (B.135) to (B.136) we use the linear continuity equation r · ⇠ = �h. The
quadratic terms in (B.137) are a contribution to the wave-averaged mean fluid element volume
that is ‘hidden’ by wave-averaging.
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