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1 Introduction

Winds flowing over the ocean excite a spectrum of surface gravity waves ranging from ripples to kilometer-
long swells. Beneath persistent winds, the statistics of the shortest gravity waves saturate in a stationary
balance between wind input, nonlinear interations between wave components, and dissipation and break-
ing (Phillips, 1985). The saturated fraction of the wave spectrum is called the ‘equilibrium range’. Longer
waves, or ‘swell’, are out of equilibrium by definition and therefore grow along the fetch of the wind.

Much of the momentum input into the ocean is transferred via form stress acting on the faces of
equilibrium range waves (Grare et al., 2013; Melville, 1996). The shortness of equilibrium range waves
and the accompanying effects of wave breaking motivate the parameterization of air-sea momentum
transfer as an effective stress imposed at the air-sea interface. Yet some fraction of the total momentum
transferred between the atmosphere and ocean — perhaps as small as 5% in conditions typical to the
laboratory and field experiments (Melville, 1996), or as large as 25% beneath hurricane-strength winds
(Fan et al., 2009) — is not transferred to the ocean at or just beneath the surface, but is instead distributed
in depth by pressure gradients associated with the growth of swell. In this paper, we address the effects
of the ‘swell-mediated’ fraction of the total momentum flux on turbulent ocean surface boundary layers.

Swell mediates momentum transfer between the atmosphere and ocean when swell is resonantly excited
by coherent viscous stresses (Longuet-Higgins, 1969) or a coherent component of the atmospheric pressure
spectrum. We illustrate this process by considering the oceanic response to the traveling atmospheric
pressure disturbance

pa(x, t) = ρ0P cos
(
kx−

√
gk︸︷︷︸

def
= σ

t
)
, (1)

where ρ0 is an ocean reference density, P is the ocean-side kinematic pressure, and g is gravitational
acceleration. Over an ocean at rest, the pressure field in (1) excites an infinite, monochromatic surface
wave field with wave number k and frequency σ =

√
gk with surface displacement

s(x, t) =
Pk

2σ
t︸ ︷︷ ︸

def
= a(t)

sin(kx− σt) . (2)

In (2) we define the time-dependent swell amplitude, a(t). If pa vanishes after some time t = T , the
outcome is a infinite, steadily-propagating wave field with amplitude a(T ). This outcome was first
investigated in a seminal paper by Stokes (1847).

The depth-integrated, swell-averaged x-momentum budget for a non-rotating and inviscid ocean re-
veals the air-sea momentum transfer generated by (1),

∂t

〈∫ s

−h
u dz

〉
=

1

ρ0
〈pa∂xs〉 , (3)

where h is a depth at which momentum fluxes vanish, and the angle brackets 〈·〉 denote a simultaneous
average over horizontal directions and a time-average over the rapid oscillations of swell. The time-
derivative in (3) is the rate of change of depth-integrated momentum over time-scales much longer than
the oscillation of the surface wave field.
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The term 〈pa∂xs〉 on the right of (3) describes atmospheric pressure forces impacting the tilted ocean
surface and is called ‘form stress’. With the pressure field in (1) and surface displacement in (2), we find
that momentum is transferred to the ocean by form stress at the rate

1

ρ0
〈pa∂xs〉 =

(Pk)2

4σ
t . (4)

A remarkable aspect of this scenario, first described by Stokes (1847), is that the form stress in (4) forces
an irrotational current whose average velocity at a fixed position — the Eulerian-mean velocity 〈u〉 — is
zero. In other words, (4) acting on a non-rotating ocean forces a current with 〈u〉 = 0, and

∂t

〈∫ s

−h
udz

〉
= ∂t

∫ 0

−h
uS dz =

(Pk)2

4σ
t , where uS(z, t) = e2kza(t)2σk (5)

is called the ‘Stokes drift’ (Bühler, 2014). The rate-of-change of the depth-integrated Stokes drift (5) is
equal to the air-sea momentum transfer due to form stress in (4).

In this paper, we numerically simulate the response of a rotating, stratified, turbulent boundary
layer to the resonant atmospheric pressure forcing (1), as well as mixtures of effective surface stress
and swell-mediated form stress with similar total momentum input. In these more general scenarios, the
Eulerian-mean velocity is non-zero. However, the rate of change of the Stokes drift in (5) still measures the
part of the air-sea momentum transfer rate associated with swell-coherent form stress. To form the total
momentum budget, we define the complexified total boundary layer momentum and depth-integrated
Stokes drift,

UL(t)
def
=

〈∫ s

−h
u+ iv dz

〉
, and US(t)

def
=

∫ 0

−h
uS + ivS dz , (6)

and parameterize the net air-sea momentum transfer rate with τ + ∂tU
S, where τ is a complexified

effective surface stress that models the net effect of momentum transfer through swell-incoherent viscous
stresses, form stress acting on equilibrium range waves, and the concomitant effects of wave breaking.
The superscript ‘L’ in (6) stands for ‘Lagrangian-mean’, whose agency is discussed in section 2. The
governing equation for the total momentum UL, which may be derived either from the rotating Navier-
Stokes equations beneath a free surface, or from the Craik-Leibovich wave-averaged Boussinesq equations
(9)–(11) that form the basis for the simulations in this paper (Kukulka et al., 2010), is

∂tU
L + ifUL = τ + ∂tU

S , (7)

where f is the Coriolis parameter.
Ursell & Deacon (1950), Hasselmann (1970), Pollard (1970), and equation (7) show that, in the

presence of rotation, the current that arises beneath a growing monochromatic wave field is not steady as
in Stokes (1847)’s problem, but instead rotates inertially. A surprising result of our numerical simulations
is that, due to three-dimensionality, stratification, and pre-existing turbulence, swell-transmitted flows
both rotate inertially and transfer energy to turbulence via shear production, thus mixing and deepening
the boundary layer. This is in striking contrast to the laminar, unidirectional flow that arises in the
irrotational case analyzed by Stokes (1847) and exemplified by (5). The evolution of a turbulent boundary
layer in our most basic case beneath a growing surface wave field with τ = 0 is depicted in figure 1. Setting
τ = 0 distinguishes our work from Kukulka et al. (2010), Sullivan et al. (2012) and Large et al. (2019)
that investigate time-dependent mixing processes due to a combination of time-dependent τ and ∂tU

S,
and which do not separately investigate the effects of the ‘additional’ momentum input by non-zero ∂tU

S.
Section 2 introduces the wave-averaged Boussinesq equations and discusses some of their basic prop-

erties. In section 3, we continue beyond the scenario depicted in figure 1 to investigate the qualitative
differences between the mixing and deepening of turbulent boundary layers forced by an effective surface

2



Figure 1: Currents and turbulence beneath forced surface waves with the time-dependent Stokes drift uS =

e2kza2k
√
gk
(

1− e−t
2/2Tw

)
x̂ with wavenumber k = 2π/100 m−1, growth time scale Tw = 4 hours, equilibrium amplitude

a = 2 meters, and gravitational acceleration g = 9.81 m s−2. Contours of wL (left) and the horizontal-averaged horizontal
velocity components

〈
uL
〉

and
〈
vL
〉

(right) are shown after half an inertial period at t = π/f . The tendency of the depth

integral of the Stokes drift, ∂tU
S =

∫ 0

−h u
S dz, is a stress accompanying the growth of swell that forces a vertically-sheared

inertial oscillation and drives turbulent mixing and boundary layer deepening. More details about the physics, numerics,
and software can be found in sections 2–3, table 1 and at https://github.com/glwagner/WaveTransmittedTurbulence.jl.

stress τ and swell growth via ∂tU
S. We conclude that depth-distributed forcing by ∂tU

S produces less
mixing than forcing by τ , because ∂tU

S drives currents with weaker shear that relinquish less energy
to turbulence. In shallow boundary layers, moreover, some of the swell-transmitted atmospheric forc-
ing acts directly on laminar near-inertial motions below the base of the boundary layer. We emphasize
that these observations pertain to the interior effects of boundary layer forcing mechanisms associated
with the shear production of turbulence augmented by Langmuir turbulence phenomena, rather than the
surface-concentrated effects of wave breaking, which are neglected in our large eddy simulations.

Langmuir turbulence is not the main focus of this work. Nevertheless, the wave-catalyzed organization
of turbulent motions into the coherent structures of Langmuir turbulence (Sullivan & McWilliams, 2010;
D’Asaro et al., 2014) features prominently in our numerical solutions. In section 3.5, we observe that the
coherent Langmuir turbulence structures tend to align with the Lagrangian-mean shear, consistent with
Sullivan et al. (2012)’s results beneath realistic hurricane winds and waves. After the surface stress dies
down, however, the orientation of the coherent structures decouples from the weakening Lagrangian-mean
shear and locks onto ŷ, the axis of the effective background vorticity associated with the x̂-propagating
swell. We suggest an explanation for this phenomenon in the context of the Lagrangian-mean formulation
of the wave-averaged Boussinesq equations.

Section 4 investigates the importance of swell growth rate in determining initial conditions for large
eddy simulations, and subsequent deepening of turbulent boundary layers under steady surface stress and
steady surface waves. Section 5 concludes by discussing how our results may corroborate, a posteriori,
some assumptions that underpin the parameterization of atmosphere-ocean momentum transfer in general
circulation models. Appendix A describes the large eddy simulation software “Oceananigans.jl”, appendix
B provides the vector calculus identities requires to manipulate the Eulerian-mean Craik-Leibovich equa-
tions into their Lagrangian-mean form, and appendix C produces a table of the particular large eddy
simulations referenced in this work.
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2 The surface-wave-averaged Boussinesq equations

The Lagrangian-mean velocity beneath surface gravity waves is

uL def
= uE + ξ̃ · ∇ũ︸ ︷︷ ︸

def
=uS

, (8)

where ũ is oscillatory velocity associated with waves, ξ̃ =
(
ξ̃, η̃, ζ̃

)
is the wavy zero-mean particle dis-

placement defined via ∂tξ̃ = ũ, the overline ( ) is a running Eulerian time-average — a ‘wave average’

— over surface wave oscillations, uE def
= ū is the Eulerian-mean velocity, and uS is the Stokes drift. The

Lagrangian-mean velocity uL(x, y, z, t) advects mass, momentum, and vorticity, and its variance 1
2 |u

L|2
is the wave-averaged kinetic energy.

The wave-averaged Boussinesq equations in an f -plane tangent to and rotating with the ocean surface
and cast in terms of uL are (Craik & Leibovich, 1976; Huang, 1979; Leibovich, 1980; Holm, 1996; Suzuki
& Fox-Kemper, 2016; Seshasayanan & Gallet, 2019)

∂tu
L +

(
uL · ∇

)
uL +

(
f ẑ −∇× uS

)
× uL +∇p = b ẑ −∇ · T + ∂tu

S , (9)

∂tb+ uL · ∇b = −∇ · q , (10)

∇ · uL = 0 (11)

where p is Eulerian-mean kinematic pressure, b is Eulerian-mean buoyancy, f is the Coriolis parameter,
and T and q are the stress tensor and buoyancy flux due either to molecular diffusion or a subfilter
turbulent diffusion model for large eddy simulation. We show how (9)–(11) are derived from the Eulerian-
mean form of the Craik-Leibovich equations, and how they are connected to the generalized Lagrangian-
mean equations derived by Andrews & McIntyre (1978) in appendix B.

Equations (9)–(11) are an asymptotic approximation of the Navier-Stokes equations beneath a small
amplitude and weakly modulated surface wave field. In particular, (11) neglects a term relevant for time-
dependent swell and associated with divergence of the vertical component of the Stokes drift. If accounted
for, this vertical divergence would lift the mean position of each fluid parcel by 1

2a
2ke2kz as the swell

amplitude a increases (see McIntyre (1981) and equation 3.7 in Longuet-Higgins (1986)). In the cases
considered in this paper, however, the vertical velocity associated with this mean vertical displacement
is miniscule: for example, the growth of a = 2 m amplitude swell with wavenumber k = 2π/100 m−1 lifts
the sea surface by just 1

2a
2k = 0.12 m over a period of 4 hours. Because the effect is so small, we neglect

the vertical component of the Stokes drift and prescribe wL = 0 at z = 0.
The momentum equation (9) is often written as a prognostic equation for the Eulerian-mean velocity,

uE, both for analysis (Craik & Leibovich, 1976; Suzuki & Fox-Kemper, 2016) and large eddy simulation
(Skyllingstad & Denbo, 1995; McWilliams et al., 1997; Noh et al., 2004; Polton & Belcher, 2007; Harcourt
& D’Asaro, 2008; Yang et al., 2015). We use the Lagrangian-mean velocity uL instead as our prognostic
variable for both numerical simulations and analysis. Using uL explicitly identifies the role of atmospheric
momentum forcing transmitted via growing swell, and thus ∂tu

S, in driving the turbulent evolution of
the simulated surface boundary layers in section 3.

Prescribing uS(x, t) in (9) determines the effects of swell on the evolution of the Lagrangian-mean
momentum, uL. Vertical fluxes of horizontal momentum into uL through saturated surface waves in
the equilibrium range are prescribed through stress boundary conditions on Txz and Tyz at z = 0.
Buoyancy fluxes are prescribed through qz |z=0. The complexified downwards surface stress in (7) is

τ
def
= −Txz − i Tyz |z=0.
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2.1 Wave-averaged effective background vorticity

The term (
f ẑ −∇× uS︸ ︷︷ ︸

def
=Ω†

)
× uL , (12)

appears in the momentum equation (9), where f ẑ is the planetary vorticity and ∇ × uS is the surface
wave pseudovorticity. As discussed by Bühler (2014) in their section 11.3.2, (12) means that the effective
background vorticity Ω† is advected by the Lagrangian-mean velocity uL. In other words, the total
vorticity is

Ω
def
= Ω† +∇× uL = f ẑ +∇×

(
uL − uS︸ ︷︷ ︸

def
=uE

)
, (13)

in the sense that ∇× (9) with b = 0 and T = 0 is

∂tΩ +
(
uL · ∇

)
Ω = (Ω · ∇)uL , (14)

the usual vorticity equation describing the three-dimensional advection of vortex lines (see again Bühler
(2014), section 11.3.2). Thus while uL transports mass, momentum, and vorticity, the wave-averaged
deviation from planetary vorticity is ∇ × uE, rather than ∇ × uL. This altered relationship between
momentum and vorticity encapsulates the dynamical effect of surface waves on the evolution of uL.
We use the interpretation of Ω† as an effective background vorticity to explain some of the phenomena
observed in our large eddy simulations in section 5.

2.2 Wave-averaged kinetic energy

The conservation law for volume-integrated wave-averaged kinetic energy, 1
2 |u

L|2, in unstratified flow
with b = 0 and inviscid flow with T = 0 follows from

∫
uL · (9) dV ,

d

dt

∫
1
2

∣∣uL
∣∣2 dV =

∫
uL · ∂tuS dV , (15)

where we have assumed there are no momentum fluxes across the boundary of V . The total mean kinetic
energy

∫
1
2

∣∣uL
∣∣2 dV is therefore conserved beneath steady surface waves in unstratified, inviscid flow:

there is no energy exchange between uL and steady surface waves. Equation (15) shows that forced
surface waves with non-zero ∂tu

S are a source of oceanic momentum and kinetic energy.
Substituting uE = uL − uS into equation (15) yields a formula for the volume-integrated Eulerian-

mean kinetic energy 1
2

∣∣uE
∣∣2 = 1

2

∣∣uL
∣∣2 + 1

2

∣∣uS
∣∣2 − uL · uS,

d

dt

∫
1
2

∣∣uE
∣∣2 dV = −

∫
uS · ∂tuE dV . (16)

Due to the term on the right of (16), Eulerian-mean kinetic energy is not conserved in unstratified,
inviscid flow beneath steady surface waves.

3 Large eddy simulations beneath growing swell

We consider the forced growth of two deep water swells with amplitudes a = 1 meter and a = 2 meters.
Both swells grow over a time scale of Tw = 4 hours, have 100 meter wavelength, 8 second period, and the
horizontal Stokes drift profiles

uS(z, t) = e2kza2k
√
gk︸ ︷︷ ︸

def
= uSeq(z)

(
1− e−t

2/2T 2
w

)
, (17)
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where g = 9.81 m s−2. k = 2π/100 m−1 and a = 1, 2 m in (17) are chosen (i) to illustrate the swell-
mediated transmission of momentum below a shallow boundary layer; and (ii) to illustrate how stronger
and thus deeper turbulent mixing increases the effectiveness with which the swell-transmitted momentum
mixes the boundary layer.

The Stokes acceleration ∂tu
S and total stress ∂tU

S =
∫ 0
−h ∂tu

S dz associated with (17) are

∂tu
S(z, t) =

t e−t
2/2T 2

w

T 2
w

uSeq(z) , and ∂tU
S =

t e−t
2/2T 2

w

Tw

a2
√
gk

2Tw︸ ︷︷ ︸
def
= τw

. (18)

In (18), the equilibrium Stokes profile ueq(z) is defined in (17), and τw scales the stress exerted on the
ocean by the atmosphere via forced swell. The maximum vertically-integrated momentum forcing of the
boundary layer due to (17) is

max
(
∂tU

S
)

= ∂tU
S
∣∣
t=Tw

=
τw√

e
≈

{
1.65× 10−5 m2 s−2 for a = 1 m ,

6.61× 10−5 m2 s−2 for a = 2 m ,
(19)

similar to the stress exerted by 12-hour-long wind pulses with maximum speed 4 m s−1 and 8 m s−1.1

3.1 Numerical methods and software

Our large eddy simulations solve (9)–(11), where uL is the resolved Lagrangian-mean velocity filtered to
remove scales smaller than the numerical grid scale. Spatial filtering motivates down-gradient approxi-
mations for the subfilter stress tensor and diffusive flux,

Tij = −2νeΣ
L
ij , and qi = −κe∂ib , (20)

in terms of the filtered strain tensor ΣL
ij = 1

2

(
∂iu

L
j + ∂ju

L
i

)
and filtered buoyancy gradient ∂ib, where

the indices i = (1, 2, 3) correspond to the Cartesian directions (x, y, z). The eddy viscosity νe and eddy
diffusivity κe in (20) are modeled with the anisotropic minimum dissipation (AMD) formalism introduced
by Rozema et al. (2015) and Abkar et al. (2016), refined by Verstappen (2018), and validated and described
in detail for ocean-relevant scenarios by Vreugdenhil & Taylor (2018). Additional details about (20) are
given in appendix A.

We solve (9)–(11) numerically with Oceananigans, a software package developed by the authors in
the Julia programming language that runs on Graphics Processing Units (GPUs) (Bezanson et al., 2012;
Besard et al., 2018). The simulations in this paper use second-order finite volume spatial discretization,
second-order Adams-Bashforth time discretization, a pressure projection method to ensure ∇ · uL = 0,
and a fast method based on the fast Fourier transform to solve the pressure Poisson equation discretized
with second-order differences on a regular grid (Schumann & Sweet, 1988). Oceananigans code and
documentation are hosted at https://github.com/CliMA/Oceananigans.jl.

Our simulations are performed in two rectangular domains: one ‘regular’ size domain with dimensions
128 × 128 × 64 m in x, y, z, grid spacings 0.5 × 0.5 × 0.25 m, and resolution 2563, and a second ‘large’
domain of dimension 192×192×96 m with 0.75×0.75×0.25 m grid spacing and resolution 256×256×384.
The domains are horizontally periodic in x, y and have rigid top and bottom boundaries, where we impose
wL = 0. To absorb internal waves radiated downwards from the turbulent surface boundary layer, we
implement bottom sponge layers of the form

Fφ = e−(z+H)/δµ
(
φ† − φ

)
, (21)

1With drag coefficient Cd = 10−3, air density ρa = 1.225 kg m−3, seawater density ρw = 1035 kg m−3, and ocean-side
kinematic stress parameterized with |τ | ≈ ρa

ρw
Cdu

2
a, we find τ = 1.65× 10−5 m2 s−2 for ua = 3.7 m s−1.
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for each variable φ ∈ (u, v, w, b), where H is the depth of the domain, µ = 1
60 s−1, δ = 4 m, b† = N2z,

and u† = v† = w† = 0. Each Fφ is added to its corresponding equation in (9)–(10).
The simulations reported in this section and the rest of this paper are listed in table 1.

3.2 Generation of a weakly turbulent initial condition

We use preliminary simulations to generate a shallow, weakly turbulent boundary layer initial condition.
The spin-up simulations are forced by weak cooling associated with an upwards flux of buoyancy at the
surface,

qz |z=0 = 5× 10−10 m2 s−3 . (22)

The spin-up simulations are run for half an inertial period until tspin = π/f , where f = 10−4 s−1 is the
Coriolis parameter. The boundary layer depth at the end of the spin up is approximately 8 meters. The
horizontally-averaged buoyancy and velocity at tspin = π/f are shown in figure 2 and serve as initial
conditions for subsequent simulations reported in this section, which use the same domain, resolution,
and sponge layer configuration.

3.3 Near-inertial waves, turbulence, and boundary layer deepening

Growing swells with the increasing Stokes drift profile in (17) and equilibrium amplitudes a = 1 m and
a = 2 m are imposed on the weakly-turbulent end state of the spin-up simulation. The simulation time
is reset to t = 0 in (17), so that uS |t=0 = 0. We impose free slip conditions on the horizontal velocity
components and no normal flow on the vertical velocity component at top and bottom boundaries,

wL = ∂zu
L = ∂zv

L = 0 at z = 0 and z = −H . (23)

The boundary conditions (23) ensure there is no source of momentum from the boundaries. We impose
a no-flux condition on buoyancy at the top boundary,

∂zb |z=0 = 0 . (24)

The bottom boundary condition ∂zb |z=−H = N2 and the bottom sponge layer in (21) restore the near-
bottom buoyancy profile to N2z.

Figure 1 plots contours of vertical velocity after half an inertial period wL |t=π/f and depth profiles of

the
〈
uL
〉

and
〈
vL
〉

for the strong swell case with equilibrium amplitude a = 2 meters. Near-inertial shear
excited by the growing surface wave field drives turbulence that mixes and deepens the boundary layer. At
the same time, mixing is enhanced by the organization of turbulent motions into the coherent structures
of Langmuir turbulence, which manifest in the left panel of figure 1 as elongated rolls of alternating
positive and negative vertical velocity oriented at roughly 10◦ angles from the y-axis. The penetration
of vertical motions through the stratified base of the boundary produces smooth downwards-emanating
bulbs of vertical velocity at around z = −25 m. Turbulent motions at the base of the boundary layer
excite downward-propagating internal waves. The right panel shows the inertial rotation and downwards
turbulent penetration of the swell-transmitted current in time.

3.4 Surface-concentrated versus depth-distributed stress

To isolate the relative effect of distributed momentum forcing associated with ∂tu
S in (18), we run three

additional simulations for a = 1 m and a = 2 m each with the boundary condition

Txz
∣∣
z=0

= −∂tUS = −τw
t e−t

2/2T 2
w

Tw
, (25)

where τw is defined in (18). The boundary condition (25) prescribes a 4 hour pulse of surface stress. We
combine (25) with the Stokes drift profiles
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Figure 2: Horizontally-averaged fields in three LES forced by growing swell with equilibrium amplitude a = 2 m (solid lines),
a pulse of surface stress with no waves (dashed lines) a pulse of surface stress beneath steady waves with amplitude a = 1 m.
The panels a–d show horizontally-averaged buoyancy, buoyancy gradient, speed, and vertical velocity variance normalized
by max

(
u2
?

)
= 1.65× 10−5 m2 s−2.

1. uS = 0 (surface stress, no swell), and

2. uS = uSeq(z) for uSeq(z) in (17) (surface stress, steady swell).

For a = 1 m we also run a simulation forced by both the surface stress in (25) and growing swell with
uS(z, t) from (17), which we call ‘surface stress, growing swell’. The cases described in the previous
section 3.3 are called the ‘growing swell, no surface stress’ cases.

Figure 2 compares horizontally-averaged profiles of buoyancy, buoyancy gradient, horizontal speed√
〈uL〉2 + 〈vL〉2, and vertical velocity variance

〈(
wL
)2〉

after one inertial period at t = 2π/f in the four

simulations that correspond to an equilibrium wave amplitude of a = 1 m. The maximum value of the
friction velocity,

max (u?)
def
=
√

max (∂tUS) ≈ 4 mm s−1 (for a = 1 m) (26)

is used to normalize speed and vertical velocity variance. Turbulent mixing produced by growing swell
deepens the boundary layer from z ≈ −8 meters at t = 0 to z ≈ −12 meters at t = 2π/f . A substantial
fraction of the total momentum is transmitted to laminar, non-turbulent near-inertial motions below
z ≈ −12, whose shear does not contribute to turbulent mixing. The fingerprint of momentum transmitted
by swell below the boundary layer is the blue exponential tail in figure 2c below z = −12 meters. The
boundary layers driven by surface stress are deeper, therefore, because more of the mean kinetic energy
transmitted to the boundary layer is converted to turbulence.

Figure 2d shows the average vertical velocity variance
〈(
wL
)2〉

. The case forced by surface stress and

beneath steady swell has the strongest vertical velocities. We hypothesize this is due to the formation
of vigorous Langmuir structures beneath strong, steady swell in the presence of surface stress. Vertical
velocities are somewhat weaker in the case with both surface stress and growing swell, perhaps because
the Stokes drift is not as strong during active momentum forcing by surface stress. Nevertheless, the
surface stress, growing swell case — which experiences the strongest horizontal momentum forcing by
both surface stress and swell-transmitted stress — boasts the deepest boundary layer and the strongest
horizontal velocities.
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Figure 3: Horizontally-averaged fields in three LES forced by growing swell with equilibrium amplitude a = 2 m (solid
lines), a pulse of surface stress with no waves (dashed lines) a pulse of surface stress beneath steady waves with amplitude
a = 2 meters. The panels a–d show horizontally-averaged buoyancy, buoyancy gradient, speed, and vertical velocity variance
normalized by max

(
u2
?

)
= 6.61× 10−5 m2 s−2.

Figure 3 is similar to figure 2 but for equilibrium wave amplitude a = 2 meters. The maximum value
of the friction velocity for a = 2 m is

max (u?) =
√

max (∂tUS) ≈ 8 mm s−1 . (27)

The crucial difference between the results depicted in figure 2 and the results in 3 is that turbulence in the
growing swell simulation mixes the boundary layer to z ≈ −32 meters. This greater deepening enables
greater turbulence production by shear transmitted by the growing swell, and thus mixing rates more
comparable to the boundary layers driven by surface stress. The dramatic differences in vertical velocity
variance between the blue lines in figure 2d and 3d are evidence that Langmuir turbulence is more active
and effective in the growing swell simulation with a = 2 meters than in the growing swell simulation
with a = 1 meter. Despite strong vertical velocities beneath growing swell (blue line, figure 3d), which
suggest the presence of Langmuir turbulence (McWilliams et al., 1997; Sullivan & McWilliams, 2010),
the boundary layer is deeper in the surface stress case with no swell (blue and orange lines, figure 3b).

Figure 4 illustrates the temporal evolution of the horizontally-averaged x-velocity 〈uL〉(z, t) and the
horizontally-averaged turbulent kinetic energy

E(z, t)
def
=
〈

1
2

∣∣uL −
〈
uL
〉 ∣∣2 〉 . (28)

The total stress exerted on the boundary layer for the ‘growing waves’ and ‘surface stress, steady waves’
simulations, which are plotted in the top right and left panels of figure 4, are identical. Yet because
surface stress is concentrated at the top of the domain, it drives faster, more strongly sheared currents
that transfer more of their energy to turbulent kinetic energy. The turbulent kinetic energy with surface
stess and steady wave overhead is roughly 3× larger than with growing waves and no surface stress. The
temporal structure is also different: a burst of turbulence appears beneath growing waves around t = 8
hours; while a turbulent layer steadily penetrates the stratified fluid below the surface stress over the 8
hour period of significant forcing.

9



Figure 4: A depth-time of the horizontally-averaged x-velocity,
〈
uL
〉

(z, t), and turbulent kinetic energy E(z, t) defined in
(28).

3.5 Alignment of freely-decaying coherent Langmuir turbulence structures perpen-
dicular to Stokes drift

Figure 5 plots a time-series of normalized vertical velocity contours at z = −2 meters and z = −8 meters
for the surface stress, steady waves case with a = 2 m. A black arrow in the center of each plot indicates
the direction of the mean horizontal flow at each time and depth. The time series shows that the coherent
Langmuir turbulence structures rotate and grow in size over time, especially after the forcing dies out
after t ≈ 3

4 × 2π/f .
The rotation of the coherent Langmuir turublence structures appears fixed to the mean flow direction

at early times up to t = 1
2 × 2π/f , when momentm forcing is significant. After t = 1

2 × 2π/f , and as the
mean shear weakens, the cell appear to rotate into alignment with ŷ at around t = 2π/f . ŷ is the axis
of the background vorticity associated with the surface waves,

−∇× uS = ∂zu
S ŷ . (29)

Thus the coherent structures align with the direction of mean shear at early times and during active
forcing, as in Sullivan et al. (2012), but rotate onto the axis of the surface wave pseudovorticity at later
times, during free decay.

4 Turbulent mixing following rapid and gradual surface wave growth

In this section we reveal some differences between the turbulent evolution of boundary layers forced by
the (i) rapid and (ii) gradual growth of a surface wave field. In short, when f 6= 0, the rapid growth of
a surface wave field leads to the momentum distribution uL = uS and thus uE = 0, while the gradual

10



Figure 5: Contours of vertical velocity normalized by its maximum absolute value at z = −2 m and z = −8 m from the
strong ‘surface stress with steady waves’ simulation (simulation 8 in table 1), showing the rotation of coherent Langmuir
turbulence structures into ŷ. A thick arrow in the middle of the domain indicates the direction of the horizontally-averaged
horizontal flow at the same depth as the vertical velocity. The simulation is actively forced for t ≈ 12 hours; the flow begins
to decay freely after t ≈ 3

4
× 2π/f . At early times, the coherent structures are roughly aligned with the direction of mean

shear, which is aligned with x̂, the direction of forcing. As the current rotates inertially, so do the coherent structures,
though after t ≈ π/f the rotation rate of the structures begins to slow until t ≈ 2π/f , at which point the structure axes are
fixed to ŷ. Between t = 5

4
× 2π/f and t = 3

2
× 2π/f , the mean shear rotates through x̂, perpendicular to the orientation of

the coherent structures, which destroys much of the structures’ coherence (not shown). The aftermath of this shearing event
is apparent from comparing the vertical velocity at z = −2 m: much of the coherency evident at t = 5

4
×2π/f is destroyed at

t = 3
2
× 2π/f . The strength and coherency of the Langmuir turbulence structures thus pulsates as the near-inertial current

rotates, strengthening when the current is aligned or anti-aligned with ŷ, and shearing and disintegrating when the mean
current is perpendicular to ŷ.
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growth of a surface wave field leads to uL = 0. We explore the difference between these two initial
conditions on turbulent mixing driven by surface stress using large eddy simulations.

4.1 Rapid and gradual surface wave growth over laminar boundary layers

If τ is a prescribed function of time, the solution to (7) is

UL(t) = UL(0) + e−ift
∫ t

0
eift

′ (
τ + ∂t′U

S
)

dt′ , (30)

In the limit that surface waves grow rapidly with τ = 0, such that ∂tU
S = US

eqδ(t) for some equilibrium

Stokes transport US
eq, (30) is an inertial oscillation,

UL(t) = UL(0) + e−iftUS
eq . (31)

If surface waves grow over much longer time-scales than 1/f , on the other hand, then UL ≈ 0.
A generalization of the vertically-integrated result in (31) occurs beneath surface waves with the

time-dependent Stokes drift field
uS(z, t) = uS

eq(z)H(t) , (32)

where H(t) is the Heaviside function and uS
eq(z) is the equilibrium Stokes drift. In this case, the Stokes

drift tendency is ∂tu
S = uS

eqδ(t) and Lagrangian-mean velocity field just after t = 0, when the surface
wave Stokes drift profile is steady, is

lim
t→0+

uL = uS
eq(z) . (33)

This flow has zero Eulerian-mean current, and corresponds to an ocean boundary layer forced by the
rapid growth of a surface wave field. If stable, the initial condition (33) develops into the perfect inertial
oscillation

uL(z, t) + i vL(z, t) = e−iftuSeq(z) , (34)

with constant mean kinetic energy
1
2

∣∣uL
∣∣2 = 1

2

(
uSeq
)2
, (35)

and oscillatory Eulerian-mean kinetic energy

1
2

∣∣uE
∣∣2 = (1− cos ft)

(
uSeq
)2
. (36)

In the absence of sources of vorticity such as rotation, stratification, or viscous stresses, the flow
uE = 0 is stable and cannot transition to turbulence.2 In stratified surface-wave-averaged flows, however,
stability is guaranteed only when the Lagrangian-mean Richardson number is greater than 1

4 (Holm,
1996),

RiL
def
=

∂zb

(∂zuL)2 + (∂zvL)2
> 1

4 . (37)

4.2 Large eddy simulations of turbulent mixing driven by surface stress following
rapid and gradual surface wave growth

We use large eddy simulations to analyze the turbulent mixing of the ocean surface boundary layer
following either rapid surface wave growth leading to (33), or gradual surface wave growth leading to

uL |t=0 = 0 . (38)

2While the wave-averaged momentum is uL, the wave-averaged vorticity is ∇× uE (see Bühler (2014) or chapter 2.4 in
Wagner (2016)). Thus without a source of vorticity, a flow with uE = 0 is irrotational and cannot transition to turbulence.

12



Figure 6: Contours of vertical velocity in the xy-plane and at a depth z = −4 meters in the reference, ‘1× excited’, and ‘1×
resting large eddy simulations. Simulation parameters are detailed in table 1.

We refer to (33) as the ‘excited’ state, and (38) as the ‘resting’ state.
We choose parameters such that our results resemble those of McWilliams et al. (1997). McWilliams

et al. (1997) uses the Stokes drift
uS(z) = e2kza2k

√
gk x̂ . (39)

corresponding to a monochromatic deep water wave with amplitude a = 0.8 m and wavenumber k =
0.105 m−1. The surface stress and surface buoyancy flux are

Txz |z=0 = 3.72× 10−5 m2 s−2 , (40)

qz |z=0 = −2.31× 10−8 m2 s−3 . (41)

Turbulent mixing is mostly driven by the surface stress in (40). The buoyancy flux in (41), which has a
negligible impact on overall turbulent mixing, serves mainly to counteract the spurious laminarization of
the near-surface velocity field in (McWilliams et al., 1997). Our initial buoyancy profile is

b |t=0 = N2z with N2 = 1.94× 10−5 s−2 , (42)

superposed with small random noise. With ∂zb = N2 in (42) and ∂zu
S = 2e2kz(ak)2

√
gk, a = 0.8 m,

k = 0.105 m−1, and g = 9.81 m s−2, RiL ≈ 0.09 at t = 0 and z = 0 such that the sufficient condition
for instability in (37) is met. The simulations are performed in a rectangular domain with dimensions
128 × 128 × 64 m, grid spacing 0.5 × 0.5 × 0.25 m, resolution 2563, and with sponge layers of the form
(21).

We refer to cases with a = 0.8 m in (39) ‘1×’ cases, and run two additional cases with excited and
resting initial conditions and the same boundary conditions, except with 4× stronger Stokes drift fields

uS
4× = 4uS , (43)

corresponding to surface waves with twice the amplitude. We finally run a ‘reference’ simulation with
uS = 0. These five simulations are labeled A–E in table 1. A visualization of vertical velocity in the xy-
plane after two inertial periods such that t = 2×2π/f , at a depth of z = −4 meters, and for the reference
case, 1× excited case, and 1× resting case, are shown in figure 6. Both the 1× excited and 1× resting
cases exhibit the coherent structures of well-developed Langmuir turbulence (Sullivan & McWilliams,
2010).
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Figure 7: Horizontally-averaged fields in ‘1×’ large eddy simulations. (a) buoyancy, (b) buoyancy gradient, (c) speed,
and (d) vertical velocity variance. ‘Excited’ initial conditions (dashed lines) cause an initial mixing event to deepen the
boundary layer compared to ‘resting’ initial conditions (solid lines). This is most evident in the buoyancy gradient profiles
at t = 1

4
× 2π/f (blue lines in b). By t = 2 × 2π/f , memory of the initial condition is lost and the buoyancy, buoyancy

gradient, and vertical velocity variance profiles are similar between the excited and resting case (orange dashed and solid
lines in a, b, and d). The horizontal velocities in the excited case still exhibit faster speeds (orange dashed and solid lines in
c) due to the excitation of a strong inertial oscillation at t = 0. The differences between the ‘no waves’ and ‘excited’ cases
are discussed in McWilliams et al. (1997). Figure 10 reproduces some of the plots from McWilliams et al. (1997). Simulation
parameters are detailed in table 1.

The main result of this section is that the ‘excited’ initial conditions in (33) provide a reservoir
of near-inertial shear that quickly transitions to turbulence and rapidly deepens the boundary layer at
early times. This rapid early deepening, compared to the more gradual evolution of boundary layers
initialized with the resting state (38), is illustrated in figure 7 and 8, which depict the horizontally-
averaged buoyancy, vertical buoyancy gradient, and Lagrangian-mean velocity fields 〈uL〉 and 〈vL〉 after
a quarter of an inertial period (blue lines, t = 1

4 × 2π/f) and after two inertial periods (orange lines,
t = 2× 2π/f) in the 1× and 4× cases, respectively. The effect of 1× excited initial conditions is modest
— the boundary layer is approximately 20% deeper than the 1× resting case at t = 1

4 × 2π/f — and the
two boundary layer depths become similar by t = 2× 2π/f as boundary layer deepening slows.

Because the surface wave field is stronger in the 4× cases, the effect of initial enhanced shear in the
‘excited’ case is more dramatic: after 1

4 of an inertial period, the boundary layer is almost twice as deep
in the excited simulation as in the ‘resting’ and ‘reference’ simulations. The imprint of the initial excited
state is still evident even at t = 2× 2π/f , at which point the excited boundary layer is still deeper than
the boundary layer spun up from a resting state. We conclude with the visualization of the evolution of
vertical velocity in figure 9 from the 4× resting and excited experiments at the early time t = 1

4 × 2π/f .
In the 4× excited simulation, turbulence penetrates deeper and regions of organized vertical velocity are
stronger, reflecting both the greater energy available for turbulent mixing in the excited cases, and the
organization of the more energetic turbulence into stronger coherent structures.

5 Discussion

The simulation illustrated by figure 1 shows that the growth of surface waves can excite sheared near-
inertial waves and drive turbulence and mixing that deepenes the ocean surface boundary layer. The
simulations in section 3 show that, more generally, the partitioning of ocean momentum forcing into a
surface-concentrated component and a depth-distributed component mediated by growing swell impacts
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Figure 8: Like figure 7, except for ‘4×’ large eddy simulations with 4× stronger wave fields and excited initial conditions.
The difference between the boundary layer depth at t = 1

4
× 2π/f for the resting and excited cases is dramatic, as evidenced

by the blue dashed and solid lines in panel b. Unlike figure 7, memory of the initial mixing event persists at t = 2× 2π/f .
The ‘resting’ case exhibits stronger vertical velocities than the excited case at t = 2 × 2π/f , especially at the base of the
boundary layer. The reason for this is unknown.

Figure 9: Comparison of the vertical velocity at t = 1
4
× 2π/f in two large eddy simulations with ‘resting’ and ‘excited’

initial conditions.
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the ensuing mean currents and turbulent evolution and deepening of the ocean surface boundary layer.
The simulations in section 4 show that the rate at which swell grows also affects the evolution of the
boundary layer, a fact that is well-appreciated in the context of surface-concentrated momentum forcing,
but less so for swell-mediated momentum forcing.

The distinction between momentum transfer via equilibrium range waves and viscous stress near or
at the surface, and depth-distributed momentum transfer via the growth of swell may be important when
∂tU

S comprises a significant fraction of the total water-side stress τ + ∂tU
S. For example, Fan et al.

(2009) find that ∂tU
S rises to 25% of the total stress in strongly-forced hurricane conditions. However,

depending on the quantity of interest, the differences between boundary layers driven by τ and boundary
layers driven by ∂tU

S are probably small in typical scenarios when ∂tU
S is small compared to τ . This is

especially true in boundary layers deeper than the longest swell components, where preexisting turbulence
capably converts swell-deposited kinetic energy to turbulent kinetic energy.

The unimportance of the depth-dependence of atmospheric momentum forcing under typical con-
ditions has implications for parameterizations of atmospheric momentum forcing in general circulation
models. Current general circulation models do not partition atmospheric momentum forcing into the two
components in (7). Instead, general circulation models impose atmospheric momentum forcing through a
surface stress. This approximation, which is sensible due to the fact that 90–95% of the stress exerted on
the ocean by the atmosphere enters via equilibrium range waves with very short decay scales (Melville,
1996), is further justified by our results, which suggest that the depth-dependence of the remaining 5–10%
of the stress exerted on the ocean is relatively unimportant except in very shallow boundary layers. More
realistic observations and modeling are warranted to further evolution of boundary layers forced by both
surface stress and swell growth.
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A Subfilter fluxes in wave-averaged large eddy simulations

Our large eddy simulations of (9)–(11) use a downgradient hypothesis to model the subfilter stress tensor
Tij appearing in (9),

Tij = −2 (νe + ν) ΣL
ij + νδ3j∂zu

S , (44)

where ν is the molecular viscosity, νe is an eddy viscosity that is a nonlinear function of resolved velocity
field, δij is the Kronecker delta, and

ΣL
ij

def
= 1

2

(
∂iu

L
j + ∂ju

L
i

)
, (45)

is the Lagrangian-mean rate of strain tensor. The divergence ∇ · T in (9) is written ∂jTij in indicial
notation. The subfilter flux of buoyancy in (10) is, similarly,

q = −κe∇b , (46)

where κe is the eddy diffusivity of buoyancy.
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A.1 The Lagrangian-mean strain tensor and kinetic energy dissipation

Typical models for large eddy simulations of (9)–(11) (Skyllingstad & Denbo, 1995; Polton & Belcher,
2007; Yang et al., 2015; McWilliams et al., 1997; Noh et al., 2004; Harcourt & D’Asaro, 2008) use a subfilter
stress tensor Tij proportional to the Eulerian-mean rate of strain. Our subfilter model, however, uses
the Lagrangian-mean rate of strain ΣL

ij in (44). We note in advance that the following discussion above
may not have significant practical import: the agreement shown in figure 10 between our simulations and
the simulations of McWilliams et al. (1997), which use ΣE

ij , suggests that the differences between models

using ΣL
ij and ΣE

ij are small when resolved turbulent fluxes dominate over turbulent fluxes modeled by
Tij .

The first important assumption we make is that the terms proportional to molecular viscosity ν in
(44) are negligible. This is justified after the fact by the results of our large eddy simulations, where
νe is roughly 102–103 times larger than ν within the bulk of the boundary layer, and where |∂zuS| is
largely similar to |∂zuL|. Note that neglecting terms proportional to molecular viscosity also means
we neglect the term ν∂zu

S in (44) associated with the molecular dissipation of the surface wave field.
This term is crucial for describing streaming flows in viscous boundary layers and other viscous surface
wave phenomena at low Reynolds number (see, for example, Longuet-Higgins (1953)). In this paper,
we assume that molecular dissipation of the surface wave field has a negligible effect on boundary layer
evolution. This assumption is almost always justified at the high Reynolds numbers of typical ocean
surface boundary layers.

The second important assumption is that the Lagrangian-mean kinetic energy, 1
2

∣∣uL
∣∣2, undergoes a

Kolmogorovian forward cascade through a spectral inertial range en route to the small, unresolved scales
of molecular dissipation. The assumption of an inertial range for spectral fluxes of Lagrangian-mean
kinetic energy follows from the conservation of Lagrangian-mean kinetic energy in (15) in the absence of
stratification, dissipation, or forcing by nonzero ∂tu

S. We note that an alternative hypothesis that the
Eulerian-mean kinetic energy, 1

2

∣∣uE
∣∣2, undergoes a forward cascade through an inertial range is more

difficult to justify because 1
2

∣∣uE
∣∣2 is not conserved. (For example, equation (36) shows that 1

2

∣∣uE
∣∣2

oscillates between 0 and 2
∣∣uL
∣∣2 in an adiabatic inertial oscillation depending on whether uL is aligned or

anti-aligned with uS.) The ‘turbulence-induced anti-Stokes’ flow observed in Pearson (2018)’s large eddy
simulations is evidence that turbulent momentum fluxes tend down Lagrangian-mean gradients, and thus
tend to dissipate Lagrangian-mean kinetic energy.

Inserting Tij = −2νeΣ
L
ij into (9), and maintaining b = ∂tu

S = 0, we find that
∫
uL · (9) dV yields

d

dt

∫
1
2

∣∣uL
∣∣2 dV = −

∫
2νeΣ

L
ijΣ

L
ij dV . (47)

The modeled dissipation rate of Lagrangian-mean kinetic energy on the right side of (47) is positive-
definite because νe > 0 by its definition below in (48). As a result, Tij in (44) models a forward cascade
of turbulent energy across the filter scale and toward molecular dissipation.

A.2 Eddy viscosity and eddy diffusivity

We use the Anisotropic Minimum Dissipation model (Rozema et al., 2015; Abkar et al., 2016; Verstappen,
2018) described by Vreugdenhil & Taylor (2018) for the eddy viscosity νe in (44) and eddy diffusivity κe
in (46).3 νe and κe are defined to be strictly non-negative,

νe
def
= max

(
ν†e , 0

)
, and κe

def
= max

(
κ†e, 0

)
, (48)

3See https://github.com/CliMA/Oceananigans.jl/blob/v0.27.2/src/TurbulenceClosures/turbulence_closure_

implementations/verstappen_anisotropic_minimum_dissipation.jl for the implementation in software.
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where the nonlinear functions ν†e and κ†e are

ν†e
def
= −C∆2

(
∂̂kûi

)(
∂̂kûj

)
Σ̂L
ij(

∂̂`ûm

)2 , and κ†
def
= −C∆2

(
∂̂kûi

)(
∂̂kb
)
∂̂ib(

∂̂`b
)2 . (49)

In (49), ∆ is the filter width defined via

1

∆2

def
=

1

3

(
1

∆2
x

+
1

∆2
y

+
1

∆2
z

)
, (50)

in terms of the potentially anisotropic x, y, z grid spacings ∆i. The hats in (49) denote the scaled
quantities

∂̂i
def
= ∆i∂i , ûi

def
=

uLi
∆i

, and Σ̂L def
=

1

2

(
∂̂j ûi + ∂̂iûj

)
. (51)

C in (49) is a model constant. For simulations A–E in table 1, which are reported in section 4, we
set C = 1

12 following Verstappen (2018) and Vreugdenhil & Taylor (2018). For simulations 1–8 in table 1
and reported in 3, we implement4 a model that increases C from 1

12 to 2
3 at z = 0 over a scale of 4∆z = 1

m,
C(z) = CI + ez/d(C0 − CI) , (52)

where CI = 1
12 , C0 = 2

3 , and d = 1 meter. The model constant enhancement in (52) is necessary for
obtaining smooth buoyancy profiles near the surface during the spin-up simulations 1 and 6 in table 1.
We find that without an enhancement of the kind in (52), the eddy diffusivity κe is too small near z = 0
during free convection, which prevents a smooth transition between the boundary-adjacent cells where
the unresolved diffusive flux q dominates, and the turbulent interior where advective fluxes ub in (10)
control the evolution of the buoyancy distribution.

Our use of uLi in (51) is justified by deriving νe and κe from the Lagrangian-mean velocity gradient
energy equation (Rozema et al., 2015). In this derivation, the term −

(
∇× uS

)
× uL in (9) arises as a

‘transport term’ in the velocity gradient energy equation, and thus, similar to Coriolis accelerations, does
not affect the form of νe (Abkar et al., 2016).

A.3 Model validation

Figure 10 plots the horizontally-averaged velocity and vertical variance from the 1× excited case, re-
producing parts of figures 2 and 6 from McWilliams et al. (1997). Our results are similar despite the
differences between our subfilter flux model and McWilliams et al. (1997)’s.

B Lagrangian-mean form of the Craik-Leibovich equations

The Eulerian-mean form of the Craik-Leibovich momentum equation (Leibovich, 1977; Suzuki & Fox-
Kemper, 2016) is

∂tu
E +

(
uE · ∇

)
uE − uS ×

(
∇× uE

)
+ f ẑ × uL +∇φ = b ẑ , (53)

where
φ

def
= p+ 1

2 |u
S|2 + uS · uE , (54)

p is the Eulerian-mean pressure, and uS ×
(
∇× uE

)
is the “vortex force”. Some algebraic gymnastics

lead from (53) to (9). Starting with the vector identity

uL ×
(
∇× uS

)
+ uS ×

(
∇× uL

)
=∇ ·

(
uS · uL

)
−
(
uS · ∇

)
uL −

(
uL · ∇

)
uS , (55)

4See https://github.com/glwagner/WaveTransmittedTurbulence/blob/master/src/les.jl.
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Figure 10: Horizontally-averaged Eulerian-mean x-velocity 〈uE〉 (a), horizontally-averaged y-velocity 〈vE〉 = 〈vL〉 (b),

horizontally-averaged vertical variance 〈
(
wL
)2〉 (c), and horizontally-averaged Lagrangian-mean 〈uL〉 (d). 〈vE〉 = 〈vL〉

because the Stokes drift is in x, such that uS = uS x̂. The vertical coordinate z/h is height normalized by h, the depth of
the maximum horizontally-averaged buoyancy gradient such that ∂z〈b〉(h) = max(∂z〈b〉). Panels a and b reproduce figure 2
in McWilliams et al. (1997). Panel c reproduces figure 6 in McWilliams et al. (1997).

and subtracting both uS ×
(
∇× uL

)
= uS ×

(
∇× uE

)
+ uS ×

(
∇× uS

)
and

uS ×
(
∇× uS

)
=∇

(
1
2 |u

S|2
)
−
(
uS · ∇

)
uS , (56)

yields the identity

uL ×
(
∇× uS

)
+ uS ×

(
∇× uE

)
+
(
uS · ∇

)
uE +

(
uL · ∇

)
uS −∇

(
1
2 |u

S|2 + uS · uE
)

= 0 . (57)

Equation (57) then implies that(
uE · ∇

)
uE − uS ×

(
∇× uE

)
+∇φ =

(
uL · ∇

)
uL −

(
∇× uS

)
× uL +∇p (58)

where we have used (54).
With the identity (58), ∂tu

E = ∂tu
L−∂tuS, and the assumption∇·uS = 0 (valid for weakly modulated

waves, as discussed in section 2), we can convert the Eulerian-mean form of the Craik-Leibovich equation
(53) and the continuity equation ∇ · uE = 0 into their Lagrangian-mean counterparts (9) and (11).

Finally, we note that (53) is derived by Leibovich (1980) from the Generalized Lagrangian-Mean
momentum equation presented in Theorem I of Andrews & McIntyre (1978). Thus Leibovich (1980)
provides a link between Andrews & McIntyre (1978) and our (9)–(11). As discussed by Leibovich (1980),
in the scenarios we consider with relatively slow background rotation and slowly-modulated waves, we
obtain a near-equivalence of the pseudomomentum that appears in Theorem I of Andrews & McIntyre
(1978) and the surface wave Stokes drift uS.

C Table of large eddy simulations

Table 1 provides a list and details about the large eddy simulations reported in this paper. Additional
information, including instructions for reproducing the simulations and figures in this paper, are hosted
at https://glwagner.github.io/WaveTransmittedTurbulence.
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ID Simulation name Stokes drift Surface conditions Domain size Grid spacing

1 weak spin-up uS = 0 qz = 5× 10−10 m2 s−3 regular 0.5× 0.5× 0.25 m

2 weak growing waves uS = uSeq(z)
(

1− e−t
2/2T 2

w

)
free slip, insulating regular 0.5× 0.5× 0.25 m

3 weak surface stress, no waves uS = 0 Txz = −τw e−t
2/2T 2

w t/Tw regular 0.5× 0.5× 0.25 m

4 weak surface stress, steady waves uS = uSeq(z) Txz = −τw e−t
2/2T 2

w t/Tw regular 0.5× 0.5× 0.25 m

5 weak surface stress, growing waves uS = uSeq(z)
(

1− e−t
2/2T 2

w

)
Txz = −τw e−t

2/2T 2
w t/Tw regular 0.5× 0.5× 0.25 m

6 strong spin-up uS = 0 qz = 5× 10−10 m2 s−3 large 0.75× 0.75× 0.25 m

7 strong growing waves uS = 4uSeq

(
1− e−t

2/2T 2
w

)
free slip, insulating large 0.75× 0.75× 0.25 m

8 strong surface stress, no waves uS = 0 Txz = −4τw e−t
2/2T 2

w t/Tw large 0.75× 0.75× 0.25 m

9 strong surface stress, steady waves uS = 4uSeq(z) Txz = −4τw e−t
2/2T 2

w t/Tw large 0.75× 0.75× 0.25 m

A reference uS = 0 Txz = τMSM regular 0.5× 0.5× 0.25 m

B 1× excited uS = e2kzuS0 Txz = τMSM regular 0.5× 0.5× 0.25 m

C 1× resting uS = e2kzuS0 Txz = τMSM regular 0.5× 0.5× 0.25 m

D 4× excited uS = e2kz4uS0 Txz = τMSM regular 0.5× 0.5× 0.25 m

E 4× resting uS = e2kz4uS0 Txz = τMSM regular 0.5× 0.5× 0.25 m

Table 1: Simulations 1–8 are reported in section (3) and simulations A–E are reported in section (4). Simulations 1–5 and
A–E use 128 × 128 × 64 m domains with 256 × 256 × 256 grid points and uniform 0.5 × 0.5 × 0.25 meter grid spacing in
x, y, z. Simulations 6–8 use 192× 192× 96 m domains with 256× 256× 384 grid points and uniform 0.75× 0.75× 0.25 meter
grid spacing in x, y, z. The the effective wave-forced stress during the growth of 100 meter wave length, 1 meter amplitude
deep water waves on a time-scale of Tw = 4 hours is τw = 2.72 × 10−5 m2 s−2. The wind stress prescribed by McWilliams
et al. (1997) is τMSM = −3.72× 10−5 m2 s−2.. Simulation 1 is initialized with uL = 10−6 × ez/2ξu(x, y, z) (∆zqz |t=0)1/3 and
b = N2z+10−6×ez/2ξb(x, y, z)N

2∆z, where each ξψ is a Gaussian-distributed, unit standard deviation random field for each
ψ ∈

(
uL, vL, wL, b

)
, ∆z = 0.25 m is the vertical grid spacing, and N2 = 10−6 s−2 is the initial buoyancy gradient. Simulations

2–7 are initialized from simulation 1 at t = π/f with Coriolis parameter f = 10−4 s−1. Simulations A–E use uS0 = 0.068 m s−1

and k = 0.105 m−1 The simulation data was generated with Oceananigans (https://github.com/CliMA/Oceananigans.jl).
Instructions for reproducing the results are at https://github.com/glwagner/WaveTransmittedTurbulence.jl.
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