
manuscript submitted to JAMES

High-level, high-resolution ocean modeling at all scales1

Gregory L. Wagner1, Simone Silvestri1, Navid C. Constantinou2,3,2

Jean-Michel Campin1, Chris Hill1, Ali Ramadhan4, Tomás Chor5,3

Jago Strong-Wright6, Xin Kai Lee1, Francis Poulin7, Keaton J. Burns1,4

John Marshall1, and Raffaele Ferrari15

1Massachusetts Institute of Technology, Cambridge, MA, USA6
2University of Melbourne, Parkville, VIC, Australia7

3ARC Center of Excellence for the Weather of the 21st Century, Australia8
4atdepth MRV Inc., 82 Wendell Ave, STE 100, Pittsfield, MA 01201, USA9

5Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA10
6DAMTP, University of Cambridge, United Kingdom11

7University of Waterloo, Waterloo, ON, Canada12

Abstract13

We describe the user interface, governing equations, and numerical methods that underpin14

new ocean modeling software called “Oceananigans”. Oceananigans’ design realizes a vision15

for Earth system modeling that combines three synergistic elements: (i) a relatively simple16

finite volume algorithm (ii) optimized for high-resolution simulations on GPUs and (iii)17

implemented in a high-level programming language (the Julia programming language in18

our case) behind a productive user interface. The outcome is a modeling system primed19

for rapid community development that also pursues state-of-the-art fidelity. Capability20

comparable to more complex operational software is achieved via novel numerical methods21

and “brute force” high resolution. We argue that our already-significant achievements in22

parameterization, numerical methods, and model development demonstrate the potential of23

this vision for accelerating progress in computational Earth science.24

Plain Language Summary25

We describe the user interface, governing equations, and numerical methods that un-26

derpin new ocean modeling software called “Oceananigans”. Oceananigans is written in27

the high-level Julia programming language, making it much easier to install, learn, and use28

than existing modeling software. Unlike most ocean modeling software, Oceananigans can29

be used to simulate motions over a wide range of spatial scales depending on the problem30

being considered — from the long durations and planetary scales useful for weather and31

climate modeling, to sub-second, sub-meter scales useful for high-fidelity simulations in lim-32

ited domains. In addition to being flexibile and ease-to-use, Oceananigans is also the fastest33

ocean modeling software today, because it utilizes GPUs. Each of these three achievements34

is noteworthy on their own. But taken together, we argue that these achievements indi-35

cate the potential our modeling strategy has to accelerate progress in computational Earth36

science .37

1 Introduction38

Computation is fundamental to ocean and climate science, such that software is rate-39

limiting for scientific progress. Since the first general circulation models ran on primitive40

computers (Phillips, 1956; Bryan, 1969), advances in hardware, numerical methods, and the41

approximate parameterization of otherwise unresolved processes have improved the fidelity42

of ocean simulations (Griffies et al., 2015). Yet as technology advances, the gap between43

potential and practice in ocean modeling is stagnant or widening, to the point that most44

software today (i) can no longer use the world’s fastest computers, (ii) relies on outdated,45

inefficient user interfaces, and (iii) is still useful for only a limited subset of the wide variety46

of ocean modeling problems.47

–1–

manuscript submitted to JAMES

This paper describes new ocean modeling software written in the Julia programming48

language (Bezanson et al., 2017). Our software features an innovative user interface, can49

simulate nonhydrostatic and hydrostatic motion at any scale using novel numerical methods50

and parameterizations, and runs on laptops and clusters of GPUs. Through effective use51

of GPUs, our software runs up to 10–50× faster than CPU-based software using equivalent52

resources. The software is being developed by the Climate Modeling Alliance as part of a53

larger effort to develop a climate model automatically-calibrated to observations and high54

resolution simulations, and with quantified uncertainty. The software is called “Oceanani-55

gans”.56

Our work shows the potential of a strategy that pairs simple algorithms written in57

high-level languages with GPU-enabled high-resolution capability to achieve accuracy with58

accessible code. Our goal is to accelerate the process of numerical method and parameteri-59

zation development — and through a longer process of collective effort, accelerate progress60

in ocean and climate science.61

1.1 From millimeters to millenia62

The evolution of ocean circulation over millenia is controlled by turbulent mixing with63

scales that range down to millimeters. Two distinct systems have evolved to model and64

understand this huge range of oceanic motion: “GCMs” (general circulation models) for65

hydrostatic regional-to-global scale simulations, and simpler software for nonhydrostatic,66

meter-scale large eddy simulations (LESs) that are high-fidelity but limited in duration and67

extent. Compared to LES, GCMs usually invoke more elaborate numerical methods and68

parameterizations to cope with the global ocean’s complex geometry and the more significant69

impacts of unresolved subgrid processes.70

Oceananigans began as software for LES on GPUs (Ramadhan et al., 2020), by per-71

fecting an approach for hybrid hydrostatic/nonhydrostatic dynamical cores pioneered by72

MITgcm (Marshall, Adcroft, et al., 1997). Our simple nonhydrostatic LES algorithm was73

then adapted and optimized for a hydrostatic GCM on GPUs, achieving unprecedented74

computational performance (Silvestri, Wagner, Constantinou, et al., 2024). At the same75

time, we developed high-quality, LES-inspired numerical methods for turbulence-resolving76

simulations (Silvestri, Wagner, Campin, et al., 2024) — resulting in a system suited to a77

brute force, resolution-focused approach to accurate simulations. This “LES the ocean”78

strategy is appealingly simple compared to alternatives relying on generalized vertical coor-79

dinates (Shchepetkin & McWilliams, 2005; Leclair & Madec, 2011; Petersen et al., 2015),80

Lagrangian vertical advection (Halliwell, 2004; Griffies et al., 2020), or unstructured hori-81

zontal grids (Ringler et al., 2013; Danilov et al., 2017; Korn et al., 2022). We hypothesize82

that “resolution everywhere” alleviates the need for more targeted resolution through un-83

structured grids and will reduce the spurious numerical mixing that pollutes the fidelity of84

lower-resolution simulations (Griffies et al., 2000), while yielding a plethora of additional85

improvements (Chassignet & Xu, 2017, 2021; Kiss et al., 2020). At the same time, using86

simple algorithms preserves the accessibility of our source code and maximizes the benefits87

of the Julia programming language.88

1.2 Why programmable interfaces matter89

In 1984, Cox published the first description of generalizable ocean modeling software90

(Cox, 1984; Griffies et al., 2015). The “Cox model” is written1 in FORTRAN 77 and91

features a multi-step user interface for building new models: first, source code modifications92

are written to determine, for example, domain geometry and boundary conditions, emplaced93

into the “base code”, and compiled. Next, a text-based namelist file is used to determine94

1 The Cox Model is also designed for a single machine, the Control Data Corporations’ Cyber 205.

–2–

manuscript submitted to JAMES

parameters like the stop iteration, mixing coefficients, and solver convergence crtieria. Cox95

(1984) provided three example model configurations to illustrate the user interface.96

With forty years of progress in software engineering, numerical methods, and param-97

eterization of unresolved processes, and more than a billion times2 more computational98

power, today’s ocean models bear little resemblance to the Cox model — except for their99

user interfaces. Current interfaces, though obviously more advanced than Cox’s, still im-100

pose multi-step workflows that invoke several programming paradigms. These multi-step101

workflows typically require the generation of input data using a separate scripting language,102

configuration of numerous namelists, and source code modifications to change the model103

equations in ways not accessible through a change of parameters.104

Multi-step workflows are inefficient. One of our most important contributions is the105

development of a fundamentally different, programmable user interface that provides a106

seamless workflow for numerical experiments including setup, execution, analysis, and vi-107

sualization using a single script. Programmable interfaces written in scripting languages108

like Python and Julia are the interface of choice and engine of progress in countless fields109

from visualization to machine learning, and their benefits transfer to ocean modeling. A110

particularly inspiring example of a productive user interface for computational physics is111

provided by the CPU-based, spectral Dedalus (Burns et al., 2020) framework for solving112

partial differential equations in simple geometries.113

A programmable interface shines for simple problems — but doesn’t just help new114

users. More importantly, this workflow accelerates the implementation of new numeri-115

cal methods and parameterizations by experienced developers. It facilitates writing and116

relentlessly refactoring comprehensive test suites. It enables fast prototyping with tight117

implementation-evaluation iterations. It makes it easier to collaborate by communicating118

concise but evocative code snippets. It makes Oceananigans fun to use. Leveraging this119

programmable interface together with the intrinsic productivity of the Julia programming120

language, Oceananigans has progressed from a simple system for serial nonhydrostatic mod-121

eling (Ramadhan et al., 2020) to parallelized software with capabilities at all scales up122

to global hydrostatic simulations with breakthrough performance (Silvestri, Wagner, Con-123

stantinou, et al., 2024), using innovative numerical methods (Silvestri, Wagner, Campin, et124

al., 2024) and new, automatically-calibrated vertical mixing parameterizations (Wagner et125

al., 2024). Users benefit too.126

The Julia programming language — a programming language suitable for both scripting127

and applications that is at once compiled and fast, but also dynamic and productive — has128

a lot to do with the feasibility of our design. Unlike functions in pure Python, for example,129

Julia functions implemented by users for forcing and boundary conditions can operate even130

in high performance contexts on GPUs. Julia enables unique Oceananigans features, such as131

interactivity, extensibility, automatic installation on any system, and portability to laptops132

and GPUs through advanced Julia community tools (Besard et al., 2018; Churavy, 2024).133

Oceananigans’ achieves breakthough performance by using GPUs, but remains accessible134

to students using Windows laptops. Easy installation on personal computers faciltates135

creative computation, since complex numerical experiments can be prototyped productively136

in a comfortable personal environment before transferred to a high performance environment137

for production runs.138

Productive interfaces are only as powerful as the capability they expose. Oceananigans’139

capabilities combine a range of capabilities offered by other systems: a design for modeling140

across scales from MITgcm (Marshall, Adcroft, et al., 1997; Marshall, Hill, et al., 1997),141

2 Compare the Cyber 205’s 1 GFlop (https://www.computinghistory.org.uk/userdata/files/the-
control-data-cyber-205-computer-system-the_practical-supercomputer.pdf) to Aurora’s 1 exaflop
(https://en.wikipedia.org/wiki/Aurora_(supercomputer)

–3–

manuscript submitted to JAMES

a simple and performant algorithm for LES from PALM and pycles (Pressel et al., 2015),142

GPU capabilities like Veros (Häfner et al., 2021), and a high-level interface like Thetis143

(Kärnä et al., 2018). Oceananigans assembles these diverse features behind a productive144

programmable interface.145

1.3 Outline of this paper146

This paper provides a tutorial-style introduction to Oceananigans’ user interface, gov-147

erning equations, and finite volume discretization. Example simulations that illustrate148

Oceananigans’ capabilities using visualizations, paired with code snippets that generate149

them, are interspersed through the paper. Our aim is to evidence and explain Oceanani-150

gans tripartite achievement: performance, flexibility, and friendliness at the same time.151

For a more detailed and comprehensive reference to the governing equations and numer-152

ical methods used by Oceananigans we refer the reader to our online documentation at153

https://clima.github.io/OceananigansDocumentation.154

Section 2 begins by explicating the basic innovations of Oceananigans’ programmable155

interface section 2 using two example simulations: two-dimensional turbulence, and a forced156

passive tracer advected by two-dimensional turbulence. In section 3, we write down the157

governing equations that underpin Oceananigans’ nonhydrostatic and hydrostatic models.158

We build up our presentation with examples that progress from simple direct numerical159

simulations of freshwater cabbeling and flow around a cylinder, to a 1/12th degree eddying160

global ocean simulation.161

In section 4, we provide a primer to the finite volume spatial discretization that162

Oceananigans uses to solve the nonhydrostatic and hydrostatic equations. This section estab-163

lishes Oceananigans’ unique suitability for turbulence-resolving simulations that have mini-164

mal, implicitly dissipative advection schemes based on Weighted Essentially Non-Oscillatory165

(WENO) reconstruction. We conclude in section 6 by outlining future development work166

and anticipating the next major innovations in ocean modeling which, we hope, will someday167

render the present work obsolete. Appendix A describes the time-stepping scheme.168

2 Oceananigans, the library169

Oceananigans is fundamentally a library of tools for building models by writing pro-170

grams called “scripts”. This departs from the usual framework wherein software provides171

pre-written monolithic programs that are configured with parameters. For writing scripts,172

Oceananigans provides syntax that judiciously combines mathematical symbols with nat-173

ural language, including acronyms when appropriate. Our design enables clear, evocative174

scripting that approaches the effectiveness of writing in communicating computational sci-175

ence.176

2.1 Hello, ocean177

The only way to learn new ocean modeling software is by building simulations with it.178

Our first example in listing 1 sets up, runs, and visualizes a simulation of two-dimensional179

turbulence. The 22 lines of listing 1 illustrate one of Oceananigans’ main achievements: a180

numerical experiment may be completely described by a single script. To execute the code181

in listing 1 it is copied into a file (call this hello_ocean.jl) and executed by typing julia182

hello_ocean.jl at a terminal.183

184185
1 using Oceananigans186
2187
3 # The third dimension is "flattened" to reduce the domain from three to two dimensions.188
4 topology = (Periodic, Periodic, Flat)189
5 architecture = GPU() # CPU() works just fine too for this small example.190
6 x = y = (0, 2π)191
7 grid = RectilinearGrid(architecture, size=(256, 256), x, y, topology)192

–4–

https://clima.github.io/OceananigansDocumentation

manuscript submitted to JAMES

8193
9 model = NonhydrostaticModel(; grid, advection=WENO(order=9))194
10195
11 ϵ(x, y) = 2rand() - 1 # Uniformly-distributed random numbers between [-1, 1].196
12 set!(model, u=ϵ, v=ϵ)197
13198
14 simulation = Simulation(model; Δt=0.01, stop_time=10)199
15 run!(simulation)200
16201
17 u, v, w = model.velocities202
18 ζ = Field(∂x(v) - ∂y(u))203
19 compute!(ζ)204
20205
21 using CairoMakie206
22 heatmap(ζ, colormap=:balance, axis=(; aspect=1))207

208209

Listing 1: A Julia script that uses Oceananigans and the Julia plotting library CairoMakie to set up, run,
and visualize a simulation of two-dimensional turbulence on a Graphics Processing Unit (GPU). The initial
velocity field, defined on line 9, consists of random numbers uniformly-distributed between −1 and 1. The
vorticity ζ = ∂xv − ∂yu is defined on line 16. The solution is visualized in figure 1.

Oceananigans scripts organize into four sections. The first three define the “grid”210

“model”, and “simulation”, and conclude with execution of the simulation. The fourth211

section, often implemented separately for complex or expensive simulations, performs post-212

processing and analysis. In listing 1, the grid defined on lines 4–7 determines the problem213

geometry, spatial resolution, and machine architecture. To use a CPU instead of a GPU,214

one writes CPU() in place of GPU() on line 5: no other changes to the script are required.215

Lines 9–12 define the model, which solves the Navier–Stokes equations in two dimensions216

with a 9th-order Weighted, Essentially Non-Oscillatory (WENO) advection scheme (see217

section 4 for more information about WENO). The velocity components u, v are initialized218

with uniformly distributed random numbers between [−1, 1]. The model definition can also219

encompass forcing, boundary conditions, and the specification of additional terms in the220

momentum and tracer equations such as Coriolis forces or turbulence closures.221

Line 14 builds a Simulation with a time-step ∆t = 0.01 which will run until t = 10222

(Oceananigans does not assume dimensionality by default, so time is non-dimensional via223

user input in this case). Later examples will illustrate how Simulation can be used to224

inject arbitrary user code into the time-stepping loop in order to log simulation progress or225

write output to disk. Lines 17-19 analyze the final state of the simulation by computing226

vorticity, illustrating Oceananigans’ toolbox for building expression trees of discrete calculus227

and arithmetic operations. The same tools may be used to define online diagnostics to be228

periodically computed and saved to disk while the simulation runs. Line 22 concludes the229

numerical experiment with a visualization. The result is shown in figure 1.230

2.2 Integrating user code231

With a programmable interface and aided by Julia’s just-in-time compilation, user232

functions specifying domain geometry, forcing, boundary conditions, and initial conditions233

can be incorporated directly into models without a separate programming environment. To234

illustrate function-based forcing, we modify listing 1 with code that adds a passive tracer235

which is forced by a moving source that that depends on x, y, t. A visualization of the236

vorticity and tracer field generated by listings 1 and 2 are shown in figure 1.237

238239
1 @inline function circling_source(x, y, t)240
2 δ, ω, r = 0.1, 2π/3, 2241
3 dx = x + r * cos(ω * t)242
4 dy = y + r * sin(ω * t)243
5 return exp(-(dx^2 + dy^2) / 2δ^2)244
6 end245
7246
8 forcing = NamedTuple(c => circling_source)247
9 model = NonhydrostaticModel(; grid, advection=WENO(order=9), tracers=:c, forcing)248

249

–5–

manuscript submitted to JAMES

250

Listing 2: Implementation of a moving source of passive tracer with a function in a two-dimensional
turbulence simulation. These lines of code replace the model definition on line 9 in listing 1. The prefix
@inline helps to ensure circling_source successfully compiles on the GPU.

Figure 1: Vorticity after t = 10 (left) and a passive tracer injected by a moving source at t = 2.5 (right) in
a simulation of two-dimensional turbulence using an implicitly-dissipative advection scheme.

Users can also insert arbitrary functions for more general tasks into the time-stepping251

loop. This supports things as mundane as printing a summary of the current model status252

or writing output, to more exotic tasks like nudging state variables or updating a diffusion253

coefficient based on an externally-implemented model.254

2.3 Abstractions for arithmetic and discrete calculus255

Abstractions representing unary, binary, and calculus operators produce a system for256

building lazy expression trees to be saved to disk during a simulation. Example calculations257

representing vorticity, ζ = ∂xv − ∂yu, speed s =
√
u2 + v2, and the x-integral of enstrophy258

Z =
∫ 2π

0
ζ2 dx are shown in listing 3. Listing 3 illustrates the difference between lazy259

“operations” and concrete Fields that have “data” in memory for storing the result of a260

computation. Distinguishing between lazy operations and concrete fields avoids unnecessary261

memory allocation when implementing diagnostics.262

263264
1 u, v, w = model.velocities265
2266
3 # Lazy expression trees and reductions representing computations:267
4 ζ = ∂x(v) - ∂y(u)268
5 s = sqrt(u^2 + v^2)269
6 Z = Integral(ζ^2, dims=1)270

271272

Listing 3: “Lazy” abstractions for expression trees and reductions — abstractions that represent
computations to be performed at some future time as needed — support custom online diagnostics.

–6–

manuscript submitted to JAMES

3 Governing equations and physical parameterizations273

Oceananigans implements two “models” for ocean-flavored fluid dynamics: the Hy-274

drostaticFreeSurfaceModel, and the NonhydrostaticModel. Each represents a template for275

equations that govern the evolution of momentum and tracers. Both models are incompress-276

ible and make the Boussinesq approximation, which means that the density of the modeled277

fluid is decomposed into a constant reference ρ0 and a small dynamic perturbation ρ′,278

ρ(x, t) = ρ0 + ρ′(x, t) where ρ′ ≪ ρ0 , (1)

and x = (x, y, z) is position and t is time.279

The relative smallness of ρ′ reduces conservation of mass to a statement of incompress-280

ibility called the continuity equation,281

∇ · u = 0 , (2)

where282

u
def
= u x̂+ v ŷ + w ẑ , (3)

is the three-dimensional velocity field. Within the Boussinesq approximation, the momen-283

tum ρ0u varies only with the velocity u. The effect of density variations is encapsulated by284

a buoyant acceleration,285

b
def
= −gρ′

ρ0
, (4)

where g is gravitational acceleration. The “buoyancy” b acts in the direction of gravity.286

3.1 The NonhydrostaticModel287

The NonhydrostaticModel represents the Boussinesq equations formulated without mak-288

ing the hydrostatic approximation typical to general circulation models. The Nonhydro-289

staticModel has a three-dimensional prognostic velocity field. Dynamic pressure P in the290

NonhydrostaticModel is written,291

P = ρ0gz + ρ0p(x, t) , (5)

where ρ0gz is the static contribution to pressure and ρ0p is the dynamic anomaly. p is called292

the kinematic pressure.293

3.1.1 The NonhydrostaticModel momentum equation294

The NonhydrostaticModel’s momentum equation incorporates advection by a back-295

ground velocity field, Coriolis forces, surface wave effects via the Craik-Leibovich asymptotic296

model (Craik & Leibovich, 1976; Huang, 1979), a buoyancy term allowed to be a nonlinear297

function of tracers and depth, a stress divergence derived from molecular friction or a turbu-298

lence closure, and a user-defined forcing term. The generic form of NonhydrostaticModel’s299

momentum equation is300

∂tu = −∇p − (u · ∇)u− (ug · ∇)u− (u · ∇)ug︸ ︷︷ ︸
advection

− f × u︸ ︷︷ ︸
Coriolis

+ (∇× us)× u+ ∂tus︸ ︷︷ ︸
Stokes drift

− b ĝ︸︷︷︸
buoyancy

− ∇ · τ︸ ︷︷ ︸
closure

+ Fu︸︷︷︸
forcing

,
(6)

where ug is a prescribed “background” velocity field, p is the kinematic pressure, f is the301

background vorticity associated with a rotating frame of reference, us is the Stokes drift302

profile associated with a prescribed surface wave field, b is buoyancy, ĝ is the gravitational303

unit vector (usually pointing downwards, so ĝ = − ẑ), τ is the stress tensor associated with304

molecular viscous or subgrid turbulent momentum transport, and Fu is a body force.305

–7–

manuscript submitted to JAMES

To integrate equation (6) while enforcing (2), we use a pressure correction method that306

requires solving a three-dimensional Poisson equation to find p, which can be derived from307

∇·(6). This Poisson equation is often a computational bottleneck in curvilinear or irregular308

domains, and its elimination is the main motivation for making the hydrostatic approxima-309

tion when formulating the HydrostaticFreeSurfaceModel, as described in section 3.2. We310

solve the Poisson equation using a fast, direct, FFT-based method (Schumann & Sweet,311

1988), providing substantial acceleration over MITgcm’s conjugate gradient pressure solver312

(Marshall, Adcroft, et al., 1997). In irregular domains, we use a conjugate gradient iteration313

similar to MITgcm, except that we leverage the FFT-based solver as a preconditioner, which314

typically converges in fewer than 10 iterations. The pressure correction scheme is described315

further in appendix A2.316

Using (2), advection in the NonhydrostaticModel is formulated in the “flux form”, which317

is conveniently expressed with indicial notation,318

advection = uj∂jui + ugj∂jui + uj∂jugi = ∂j

[(
uj + ugj

)
ui + ujugi

]
, (7)

where, for example, the i-th component of the advection term is [(u · ∇)u]i = uj∂jui.319

The formulation of the Stokes drift terms means that u is the Lagrangian-mean velocity320

when Stokes drift effects are included (see, for example, Wagner et al., 2021). With a321

Lagrangian-mean formulation, equations (2) and (6) are consistent only when us is non-322

divergent — or equivalently, when us is obtained by projecting the divergence out of the323

usual Stokes drift (Vanneste & Young, 2022). As discussed by Wagner et al. (2021), the324

Lagrangian-mean formulation of (6) means that closures for LES strictly destroy kinetic325

energy, avoiding the inconsistency between resolved and subgrid fluxes affecting typical326

LES formulated in terms of the Eulerian-mean velocity (see also Pearson, 2018).327

The labeled terms in (6) are controlled by arguments to NonhydrostaticModel invoked328

in both of listings 1 and 2. For example, “advection” chooses a numerical scheme to ap-329

proximate the advection term in (6) and (7). As another example, we consider configuring330

the closure term in (6) to represent (i) molecular diffusion by a constant-coefficient Lapla-331

cian ScalarDiffusivity, (ii) turbulent stresses approximated by the SmagorinskyLilly eddy332

viscosity model (Smagorinsky, 1963; Lilly, 1983) for large eddy simulation, or (iii) omitting333

it entirely, which we use with WENO advection schemes (and which is also our default334

setting). In these three cases, the closure flux divergence ∇·τ = ∂mτnm in indicial notation335

becomes336

−∂mτnm =


∂m (ν∂mun) (ScalarDiffusivity)

0 (nothing)

∂m

(
2Cs∆

2|Σ|︸ ︷︷ ︸
νe

Σnm

)
(SmagorinskyLilly)

(8)

where ν is the Laplacian diffusion coefficient, Σnm = ∂mun + ∂num is the strain rate tensor,337

|Σ| is the magnitude of the strain rate tensor, Cs is the SmagorinskyLilly model constant,338

∆ scales with the local grid spacing, and νe is the eddy viscosity. (ScalarDiffusivity diffusion339

coefficients may also vary in time- and space. Other closure options include fourth-order340

ScalarBiharmonicDiffusivity, various flavors of DynamicSmagorinsky (Bou-Zeid et al., 2005),341

and the AnisotropicMinimumDissipation turbulence closure (Rozema et al., 2015; Vreugden-342

hil & Taylor, 2018) for large eddy simulations.)343

Listing 4 implements a direct numerical simulation of uniform flow past a cylinder with344

no-slip boundary conditions, a molecular ScalarDiffusivity, and a centered second-order345

advection scheme. Lines 8–9 embed a cylindrical mask in a RectilinearGrid using a Grid-346

FittedBoundary, which generalizes to arbitrary three-dimensional shapes. The no-slip con-347

dition is implemented with ValueBoundaryCondition (a synonym for “Dirichlet” boundary348

conditions) on lines 14–15. Other choices include GradientBoundaryCondition (Neumann),349

–8–

manuscript submitted to JAMES

1 r, U, Re, Ny = 1/2, 1, 1000, 2048
2
3 grid = RectilinearGrid(GPU(), size=(2Ny, Ny), x=(-3, 21), y=(-6, 6),
4 topology=(Periodic, Bounded, Flat))
5
6 cylinder(x, y) = (x^2 + y^2) ≤ r^2
7 grid = ImmersedBoundaryGrid(grid, GridFittedBoundary(cylinder))
8
9 closure = ScalarDiffusivity(ν=1/Re) # Try SmagorinskyLilly() for LES
10
11 no_slip = FieldBoundaryConditions(immersed=ValueBoundaryCondition(0))
12 boundary_conditions = (u=no_slip, v=no_slip)
13
14 # Implement a sponge layer on the right side of the domain that
15 # relaxes v → 0 and u → U over a region of thickness δ
16 @inline mask(x, y, δ=3, x₀=21) = max(zero(x), (x - x₀ + δ) / δ)
17 Fu = Relaxation(target=U; mask, rate=1)
18 Fv = Relaxation(target=0; mask, rate=1)
19
20 model = NonhydrostaticModel(; grid, closure, boundary_conditions, forcing=(u=Fu, v=Fv))

Listing 4: Direct numerical simulation of flow past a cylinder at various Reynolds numbers Re. The domain
is periodic in x and a sponge layer on the right side of relaxes the solution to u = u∞ x̂ with u∞ = 1.
The experiment can be converted to a large eddy simulation (thereby sending Re → ∞) by replacing the
no-slip boundary conditions with an appropriate drag model and either (i) using a turbulence closure like
AnisotropicMinimumDissipation or SmagorinskyLilly or (ii) using the WENO(order=9) advection scheme
with no turbulence closure. Visualizations of the DNS and LES cases are shown in figure 2.

FluxBoundaryCondition (direct imposition of fluxes), and OpenBoundaryCondition (for350

non-trivial boundary-normal velocity fields).351

Results obtained with listing 4 for Re = 100, Re = 1000, and a modified version of352

listing 4 for large eddy simulation (Re → ∞) are visualized in figure 2. To adapt listing 4353

for LES, the closure is eliminated in favor of a 9th-order WENO advection scheme, and354

the no-slip boundary condition is replaced with a quadratic drag boundary condition with355

a drag coefficient estimated from similarity theory using a constant estimated roughness356

length.357

3.1.2 The NonhydrostaticModel tracer conservation equation358

The buoyancy term in (6) requires tracers, and can be formulated to use buoyancy itself359

as a tracer, or to depend on temperature T and salinity S. For seawater, a 54-term polyno-360

mial approximation TEOS10EquationOfState (McDougall & Barker, 2011; Roquet, Madec,361

McDougall, & Barker, 2015) is implemented in the auxiliary package SeawaterPolynomials,362

along with quadratic approximations to TEOS-10 (Roquet, Madec, Brodeau, & Nycander,363

2015) and a LinearEquationOfState. All tracers — either “active” tracers required to com-364

pute the buoyancy term, as well as additional user-defined passive tracers — obey the tracer365

conservation equation366

∂tc = − (u · ∇) c− (ug · ∇) c− (u · ∇) cg︸ ︷︷ ︸
advection

− ∇ · Jc︸ ︷︷ ︸
closure

+ Sc︸︷︷︸
biogeochemistry

+ Fc︸︷︷︸
forcing

, (9)

where c represents any tracer, cg represents a prescribed background tracer concentration367

for c, Jc is a tracer flux associated with molecular diffusion or subgrid turbulence, Sc is a368

source or sink term associated with biogeochemical transformations, and Fc is a user-defined369

source or sink.370

A simulation with a passive tracer having a user-defined source term is illustrated by371

listing 2 and figure 1. For a second example, we consider freshwater cabbeling. Cabbeling372

–9–

manuscript submitted to JAMES

Figure 2: Vorticity snapshots in simulations of flow around a cylinder. The top two panels show vorticity
in direct numerical simulations (DNS) that use a molecular ScalarDiffusivity closure and Centered(order=2)
advection. The bottom panel shows a large eddy simulation (LES) with no closure and a WENO(order=9)
advection scheme.

–10–

manuscript submitted to JAMES

occurs when two water masses of similar density mix to form a new water mass which,373

due to the nonlinearity of the equation of state, is denser than either of its constinuents.374

Freshwater, for example, is densest at 4 degrees Celsius, while 1- and 7.55-degree water are375

lighter with roughly the same density. We implement a direct numerical simulation in which376

7.55-degree water overlies 1-degree water, using the TEOS10EquationOfState provided by377

the auxiliary package SeawaterPolynomials. The script is shown in listing 5. The resulting378

density and temperature fields after 1 minute of simulation are shown in figure 3. Note that379

the TEOS10EquationOfState typically depends on both temperature and salinity tracers,380

but listing 5 specifies a constant salinity S = 0 and thus avoids allocating memory for or381

simulating salinity directly.382

383384
1 grid = RectilinearGrid(GPU(), topology = (Bounded, Flat, Bounded),385
2 size = (4096, 1024), x = (0, 2), z = (-0.5, 0))386
3387
4 closure = ScalarDiffusivity(ν=1.15e-6, κ=1e-7)388
5389
6 using SeawaterPolynomials: TEOS10EquationOfState390
7 equation_of_state = TEOS10EquationOfState(reference_density=1000)391
8392
9 buoyancy = SeawaterBuoyancy(gravitational_acceleration = 9.81);393
10 constant_salinity = 0, # set S=0 and simulate T only394
11 equation_of_state)395
12396
13 model = NonhydrostaticModel(; grid, buoyancy, closure, tracers=:T)397
14398
15 Tᵢ(x, z) = z > -0.25 ? 7.55 : 1399
16 Ξᵢ(x, z) = 1e-2 * randn()400
17 set!(model, T=Tᵢ, u=Ξᵢ, v=Ξᵢ, w=Ξᵢ)401

402403

Listing 5: Direct numerical simulation of convective turbulence driven by cabbeling between 1- and 7.55-
degree freshwater. ν denotes viscosity and κ denotes the tracer diffusivity. The diffusivity may also be set
independently for each tracer.

Figure 3: Density and temperature at t = 1 minute in a direct numerical simulation of cabelling in freshwater.
Note that both fields span from x = 0 to x = 2 meters; only the left half of the density field and the right
half of the temperature field are shown.

We next consider a large eddy simulation of the “Eady problem” (Eady, 1949). In the404

Eady problem, perturbations evolve around a basic state with constant shear Λ in thermal405

wind balance with a constant meridional buoyancy gradient fΛ, such that406

u = Λz︸︷︷︸
def
=U

+u′ , and b = −fΛy︸ ︷︷ ︸
def
=B

+ b′ . (10)

We use Oceananigans’ BackgroundFields to simulate the nonlinear evolution of (u′, v, w)407

and b′ expanded around U and B in a doubly-periodic domain. We impose an initially408

stable density stratification with b′ = N2z and N2 = 10−7 s−2 superposed with random409

noise. The Richardson number of the initial condition is Ri = N2/∂zU = N2/Λ; we choose410

–11–

manuscript submitted to JAMES

mean shear Λ so that Ri = 1, which guarantees the basic is unstable to baroclinic instability411

but stable to symmetric and Kelvin-Helmholtz instability (Stone, 1971). A portion of the412

script is shown in listing 6.413

414415
1 grid = RectilinearGrid(GPU(); size = (1024, 1024, 64),416
2 x = (0, 4096), y = (0, 4096), z = (0, 128),417
3 topology=(Periodic, Periodic, Bounded))418
4419
5 f, N², Ri = 1e-4, 1e-7, 1420
6 parameters = (f=f, Λ=sqrt(N²/Ri)) # U = Λz, so Ri = N² / ∂z(U) = N² / Λ and Λ = N / √Ri.421
7422
8 @inline U(x, y, z, t, p) = + p.Λ * z423
9 @inline B(x, y, z, t, p) = - p.f * p.Λ * y424
10425
11 background_fields = (u = BackgroundField(U; parameters),426
12 b = BackgroundField(B; parameters))427
13428
14 model = NonhydrostaticModel(; grid, background_fields,429
15 advection = WENO(order=9), coriolis = FPlane(; f),430
16 tracers = :b, buoyancy = BuoyancyTracer())431
17432
18 Δz = minimum_zspacing(grid)433
19 bᵢ(x, y, z) = N² * z + 1e-2 * N² * Δz * (2rand() - 1)434
20 set!(model, b=bᵢ)435

436437

Listing 6: Large eddy simulation of the “Eady problem” (cite something) expanded around the background
geostrophic shear with Ri = 1.

Our Eady simulation uses fully-turbulence-resolving resolution with 4 meter horizontal438

spacing and 2 meter vertical spacing in a 4 km×4 km×128m domain and runs for 30 days on439

a single Nvidia H100 GPU. Four snapshots of vertical vorticity normalized by f (the Rossby440

number) are shown in figure 4, illustrating the growth of kilometer-scale vortex motions441

amid bursts of meter-scale three-dimensional turbulence that develop along thin filaments442

of vertical vorticity and vertical shear. This simple configuration captures a competition443

between baroclinic instability, which acts to “restratify” or strengthen boundary layer strat-444

ification, and three-dimensional turbulent mixing driven either by a forward cascade from445

kilometer-scale motions (Molemaker et al., 2010; Dong et al., 2024) or atmospheric storms446

(Boccaletti et al., 2007; Callies & Ferrari, 2018).447

Finally, we illustrate Oceananigans’ capabilities for realistic, three-dimensional large448

eddy simulations in complex geometries by simulating temperature- and salinity-stratified449

tidal flow past a headland, reminiscent of an extensively observed and modeled flow past450

Three Tree Point in Puget Sound in the Pacific Northwest of the United States (Pawlak et451

al., 2003; Warner & MacCready, 2014). The bathymetry involves a sloping wedge that juts452

from a square-sided channel, such that453

zb(x, y) = −H

(
1 +

y + |x|
δ

)
, (11)

where L is the half-channel width (the total width is 2L), δ = L/2 represents the scale of454

the bathymetry, H = 128m is the depth of the channel, and z = zb(x, y) is the height of455

the bottom. The flow is driven by a tidally-oscillating boundary velocity456

U(t) = U2 sin
(
2πt

T2

)
(12)

imposed at the east and west boundaries. Here, T2 = 12.421hours is the period of the semi-457

diurnal lunar tide, and U2 = 0.15m s−1 is the characteristic tidal velocity around Three458

Tree Point. The initial temperature and salinity are459

T |t=0 = 12 + 4
z

H
◦C , and S |t=0 = 32 g kg−1 . (13)

A portion of the script that implements this simulation is shown in listing 7.460

–12–

manuscript submitted to JAMES

Figure 4: Surface vertical vorticity in a large eddy simulation of the Eady problem with Ri = 1 initially,
after t = 4.6, 6, 7.7, and 20 days. The grid spacing is 4 × 4 × 2 meters in x, y, z. Part of the script that
produces this simulation is show in listing 6.

–13–

manuscript submitted to JAMES

461462
1 H, L = 256meters, 1024meters463
2 δ = L / 2464
3 x, y, z = (-3L, 3L), (-L, L), (-H, 0)465
4 Nz = 64466
5467
6 grid = RectilinearGrid(GPU(); size=(6Nz, 2Nz, Nz), halo=(6, 6, 6),468
7 x, y, z, topology=(Bounded, Bounded, Bounded))469
8470
9 wedge(x, y) = -H *(1 + (y + abs(x)) / δ)471
10 grid = ImmersedBoundaryGrid(grid, GridFittedBottom(wedge))472
11473
12 T₂ = 12.421hours474
13 U₂ = 0.1 # m/s475
14476
15 @inline Fu(x, y, z, t, p) = 2π * p.U₂ / p.T₂ * cos(2π * t / p.T₂)477
16 @inline U(x, y, z, t, p) = p.U₂ * sin(2π * t / p.T₂)478
17 @inline U(y, z, t, p) = U(zero(y), y, z, t, p)479
18480
19 open_bc = PerturbationAdvectionOpenBoundaryCondition(U; inflow_timescale = 2minutes,481
20 outflow_timescale = 2minutes,482
21 parameters=(; U₂, T₂))483
22484
23 u_bcs = FieldBoundaryConditions(east = open_bc, west = open_bc)485
24486
25 @inline ambient_temperature(x, z, t, H) = 12 + 4z/H487
26 @inline ambient_temperature(x, y, z, t, H) = ambient_temperature(x, z, t, H)488
27 ambient_temperature_bc = ValueBoundaryCondition(ambient_temperature; parameters = H)489
28 T_bcs = FieldBoundaryConditions(east = ambient_temperature_bc,490
29 west = ambient_temperature_bc)491
30492
31 ambient_salinity_bc = ValueBoundaryCondition(32)493
32 S_bcs = FieldBoundaryConditions(east = ambient_salinity_bc, west = ambient_salinity_bc)494
33495
34 model = NonhydrostaticModel(; grid, tracers = (:T, :S),496
35 buoyancy = SeawaterBuoyancy(equation_of_state=497

TEOS10EquationOfState()),498
36 advection = WENO(order=9),499
37 coriolis = FPlane(latitude=47.5),500
38 boundary_conditions = (; T=T_bcs, u = u_bcs, S = S_bcs))501
39502
40 Tᵢ(x, y, z) = ambient_temperature(x, y, z, 0, H)503
41504
42 set!(model, T=Tᵢ, S=32, u=U(0, 0, 0, 0, (; U₂, T₂)))505

506507

Listing 7: Large eddy simulation of flow past a headland reminiscient of Three Tree Point in the Pacific
Northwest (see Pawlak et al., 2003; Warner & MacCready, 2014).

The oscillatory, turbulent flow is visualized in figure 5, and the calculation of the Ertel508

Potential Vorticity seen in figure 5c is done with the companion package Oceanostics.509

3.2 Hydrostatic model with a free surface510

The HydrostaticFreeSurfaceModel solves the hydrostatic, rotating Boussinesq equations511

with a free surface. The hydrostatic approximation, inherent to the HydrostaticFreeSurface-512

Model, means that the vertical momentum equation is replaced by an integral for the hydro-513

static pressure and that the vertical velocity is diagnosed from the continuity equation. The514

HydrostaticFreeSurfaceModel therefore does not need a three-dimensional Poisson equation515

for pressure. The numerical algorithms and computational performance of the Hydrostat-516

icFreeSurfaceModel are described in more detail by (Silvestri, Wagner, Constantinou, et al.,517

2024).518

In the HydrostaticFreeSurfaceModel, the horizontal momentum uh = u x̂+ v ŷ evolves519

according to520

∂tuh = −∇hp− g∇hη︸ ︷︷ ︸
free surface

− (u · ∇)uh︸ ︷︷ ︸
momentum
advection

− f × u︸ ︷︷ ︸
Coriolis

− ∇ · τ︸ ︷︷ ︸
closure

+ Fuh︸︷︷︸
forcing

, (14)

where p is the hydrostatic pressure anomaly, η is the free surface displacement, u = u x̂ +521

v ŷ + w ẑ is the three-dimensional velocity, f is the background vorticity associated with522

–14–

manuscript submitted to JAMES

Figure 5: Along-channel velocity, temperature, and Ertel potential vorticity in a tidally-forced flow past an
idealized headland with open boundaries. The tidal flow occurs in the x-directions and the snapshot depicts
the flow just after the tide has turned to the negative-x direction.

–15–

manuscript submitted to JAMES

a rotating frame of reference, τ is the stress associated with subgrid turbulent horizontal523

momentum transport, and Fuh is a body force. Horizontal momentum advection can be524

formulated in three ways,525

(u · ∇) · uh =


∇ · (uuh) “flux form” ,

ζ ẑ × uh + w ∂zuh +∇h
1
2 |uh|2 VectorInvariant ,

ζ ẑ × uh − uh ∂zw + ∂z (wuh) +∇h
1
2 |uh|2 WENOVectorInvariant ,

(15)
where the “flux form” treats momentum advection in the same way as for the Nonhydrostat-526

icModel. The numerical implementation of the WENOVectorInvariant formulation, which527

leverages Weighted Essentially Non-Oscillatory (WENO) reconstructions to selectively and528

minimally dissipate enstrophy and the variance of divergence (see section 4), is described529

by Silvestri, Wagner, Campin, et al. (2024).530

The hydrostatic pressure anomaly is determined diagnostically from hydrostatic bal-531

ance,532

∂zp = b , (16)
which replaces the prognostic vertical momentum equation ẑ · (6) used by the Nonhydro-533

staticModel. The vertical velocity is obtained diagnostically from the continuity equation,534

∂zw = −∇h · uh , (17)

and the free surface displacement η obeys the linearized equation535

∂tη = w|z=0 . (18)

Tracer evolution is governed by the conservation law536

∂tc = − (u · ∇) c︸ ︷︷ ︸
tracer advection

− ∇ · Jc︸ ︷︷ ︸
closure

+ Sc︸︷︷︸
biogeochemistry

+ Fc︸︷︷︸
forcing

, (19)

which is identical to NonhydrostaticModel except that background fields are not supported.537

Additionally, the velocity field u can be prescribed rather than evolved.538

Listing 8 implements a simulation of tidally-forced stratified flow over a series of539

randomly-positioned Gaussian seamounts.540

Figure 6: Vertical velocity of an internal wave field excited by tidally-forced stratified flow over superposition
of randomly-positioned Gaussian seamounts, after 16 tidal periods.

3.2.1 Vertical mixing parameterizations541

Oceananigans’ vertical mixing parameterizations are closures that predict the vertical542

fluxes of tracers and momentum. Depending on the parameterization, the evolution of543

auxiliary tracers like turbulent kinetic energy and the turbulent kinetic energy dissipation544

rate may also be simulated. Vertical mixing parameterizations are useful for hydrostatic545

simulations where vertical mixing is otherwise unresolved due to a coarse horizontal grid546

–16–

manuscript submitted to JAMES

1 using Oceananigans, Oceananigans.Units
2
3 grid = RectilinearGrid(size = (2000, 200),
4 x = (-1000kilometers, 1000kilometers),
5 z = (-2kilometers, 0),
6 halo = (4, 4),
7 topology = (Periodic, Flat, Bounded))
8
9 h₀ = 100 # typical mountain height (m)
10 δ = 20kilometers # mountain width (m)
11 seamounts = 42
12 W = grid.Lx - 4δ
13 x₀ = W .* (rand(seamounts) .- 1/2) # mountains' positions ∈ [-Lx/2+2δ, Lx/2-2δ]
14 h = h₀ .* (1 .+ rand(seamounts)) # mountains' heights ∈ [h₀, 2h₀]
15
16 bottom(x) = -grid.Lz + sum(h[s] * exp(-(x - x₀[s])^2 / 2δ^2) for s = 1:seamounts)
17 grid = ImmersedBoundaryGrid(grid, GridFittedBottom(bottom))
18
19 T₂ = 12.421hours # period of M₂ tide constituent
20 @inline tidal_forcing(x, z, t, p) = p.U₂ * 2π / p.T₂ * sin(2π / p.T₂ * t)
21 u_forcing = Forcing(tidal_forcing, parameters=(; U₂=0.1, T₂=T₂))
22
23 model = HydrostaticFreeSurfaceModel(; grid, tracers=:b, buoyancy=BuoyancyTracer(),
24 momentum_advection = WENO(),
25 tracer_advection = WENO(),
26 forcing = (; u = u_forcing))
27
28 bᵢ(x, z) = 1e-5 * z
29 set!(model, b=bᵢ)

Listing 8: Two-dimensional simulation of tidally-forced stratified flow over a superposition of randomly-
positioned Gaussian seamounts.

spacing. For example, such regional and global configurations, horizontal grid spacing typi-547

cally varies from O(100m) to O(100 km). Listing 9 implements a simulation of wind-driven548

vertical mixing in a single column model using two parameterizations: CATKE (Wagner et549

al., 2024), which has one additional equation for the evolution of turbulent kinetic energy550

(TKE), and k-ϵ (Umlauf & Burchard, 2005), which has two additional equations for TKE551

and the TKE dissipation rate. Figure 7 plots the result.552

3.3 Global ocean simulations with ClimaOcean553

The HydrostaticFreeSurfaceModel can be used to simulate regional or global ocean554

circulation. To illustrate global simulation with the HydrostaticFreeSurfaceModel, we im-555

plement a global simulation using ClimaOcean, which computes surface fluxes between a556

prescribed atmosphere and a hydrostatic ocean simulation implemented using Oceananigans.557

ClimaOcean additionally provides utilities for downloading and interfacing with JRA55 re-558

analysis data (Tsujino et al., 2018), jbuilding grids based on Earth bathymetry and initial-559

izing simulations from the ECCO state estimate (Forget et al., 2015). Code for a 1/12th560

degree simulation distributed over 8 GPUs is given in listing 10. The surface speed after561

180 days of simulation time is shown in figure 8. For more information about Oceanani-562

gans GPU performance in global configurations see (Silvestri, Wagner, Constantinou, et al.,563

2024).564

565566
1 using ClimaOcean, Oceananigans, Oceananigans.Units, Dates, CFTime567
2568
3 # 1/12th degree569
4 Nx = 4320570
5 Ny = 1800571
6 Nz = 40572
7 z_faces = exponential_z_faces(; Nz, depth=6000)573
8 partition = Partition(8) # Distribute simuation across 8 GPUs574

–17–

manuscript submitted to JAMES

1 using Oceananigans
2 using Oceananigans.Units
3
4 function vertical_mixing_simulation(closure; N²=1e-5, Jb=1e-7, tx=-5e-4)
5 grid = RectilinearGrid(size=50, z=(-200, 0), topology=(Flat, Flat, Bounded))
6 buoyancy = BuoyancyTracer()
7
8 b_bcs = FieldBoundaryConditions(top=FluxBoundaryCondition(Jb))
9 u_bcs = FieldBoundaryConditions(top=FluxBoundaryCondition(tx))
10
11 if closure isa CATKEVerticalDiffusivity
12 tracers = (:b, :e)
13 elseif closure isa TKEDissipationVerticalDiffusivity
14 tracers = (:b, :e, :ϵ)
15 end
16
17 model = HydrostaticFreeSurfaceModel(; grid, closure, tracers, buoyancy,
18 boundary_conditions=(u=u_bcs, b=b_bcs))
19
20 bᵢ(z) = N² * z
21 set!(model, b=bᵢ)
22
23 simulation = Simulation(model, Δt=1minute, stop_time=24hours)
24 return run!(simulation)
25 end

Listing 9: Comparison of two vertical mixing parameterizations in the evolution of an initially linearly
stratified boundary layer subjected to stationary surface fluxes of buoyancy and momentum.

Figure 7: Vertical mixing parameterizations.

–18–

manuscript submitted to JAMES

9 arch = Distributed(GPU(); partition)575
10 grid = LatitudeLongitudeGrid(arch; size=(Nx, Ny, Nz), halo=(7, 7, 7),576
11 longitude=(0, 360), latitude=(-75, 75), z=z_faces)577
12578
13 bathymetry = ClimaOcean.regrid_bathymetry(grid) # based on ETOPO1579
14 grid = ImmersedBoundaryGrid(grid, GridFittedBottom(bathymetry))580
15581
16 # Build an ocean simulation initialized to the ECCO state estimate on Jan 1, 1993582
17 ocean = ClimaOcean.ocean_simulation(grid)583
18 date = DateTimeProlepticGregorian(1993, 1, 1)584
19 set!(ocean.model, T = ClimaOcean.ECCOMetadata(:temperature; date),585
20 S = ClimaOcean.ECCOMetadata(:salinity; date))586
21587
22 # Global ocean simulation (no sea ice) forced by JRA55 reanalysis588
23 backend = JRA55NetCDFBackend(41))589
24 atmosphere = ClimaOcean.JRA55_prescribed_atmosphere(arch; backend)590
25 coupled_model = ClimaOcean.OceanSeaIceModel(ocean; atmosphere)591
26 simulation = Simulation(coupled_model, Δt=5minutes, stop_time=180days)592
27 run!(simulation)593

594595

Listing 10: A near-global simulation on a LatitudeLongitudeGrid distributed across 4 GPUs, leveraging
ClimaOcean.

Figure 8: Surface speed in a near-global ocean simulation at 1/12th degree forced by JRA55 atmospheric
reanalysis and initialized from the ECCO state estimate.

4 Finite volume spatial discretization596

Oceananigans uses a finite volume method in which fields are represented discretely by597

their average value over small local regions or “finite volumes” of the domain. Listing 11598

discretizes c = exy on three different grids that cover the unit square.599

600601
1 topology = (Bounded, Bounded, Flat)602
2 x = y = (0, 1)603
3 c(x, y) = exp(x) * y604
4605
5 fine_grid = RectilinearGrid(size=(1024, 1024); x, y, topology)606
6 c_fine = CenterField(fine_grid)607
7 set!(c_fine, c)608
8609
9 medium_grid = RectilinearGrid(size=(16, 16); x, y, topology)610
10 c_medium = CenterField(medium_grid)611
11 regrid!(c_medium, c_fine)612
12613
13 coarse_grid = RectilinearGrid(size=(4, 4); x, y, topology)614
14 c_coarse = CenterField(coarse_grid)615
15 regrid!(c_coarse, c_medium)616

617

–19–

manuscript submitted to JAMES

618

Listing 11: Finite volume discretization of exy on three grids over the unit square. The fields are visualized
in figure 9. The meaning of the “Center” in “CenterField” is discussed below.

At the finest resolution, each cell-averaged value cfine
ij is computed approximately using set!619

to evaluate exy at the center of each finite volume, where i, j denote the x and y indices of620

the finite volumes. At medium and coarse resolution, the cmedium
ij and ccoarse

ij are computed621

by averaging or “regridding” fields discretized at a higher resolution. This computation622

produces three fields with identical integrals over the unit square. For example, integrals623

are computed exactly by summing discrete fields over all cells,624 ∫
c dx dy =

1024,1024∑
i,j

Vfine
ij cfine

ij =

16,16∑
i,j

Vmedium
ij cmedium

ij =

4,4∑
i,j

Vcoarse
ij ccoarse

ij , (20)

where Vij is the “volume” of the cell with indices i, j (more accurately an “area” in this625

two-dimensional situation). Figure 9 visualizes the three fields.626

Figure 9: Finite volume discretization of exy on the unit square at three different resolutions.

The discrete calculus and arithmetic operations required to solve the governing equa-627

tions of the NonhydrostaticModel and HydrostaticFreeSurfaceModel use the system of “stag-628

gered grids” described by (Arakawa, 1977). Both models use “C-grid” staggering, where629

cells for tracers, pressure, and the divergence of the velocity field ∇ · u are co-located, and630

cells for velocity components u = (u, v, w) are staggered by half a cell width in the x-,631

y-, and z-direction, respectively. Listing 12 illustrates grid construction and notation for632

a one-dimensional staggered grid with unevenly-spaced cells. Figure 10 visualizes 2- and633

3-dimensional staggered grids, indicating the location of certain variables.634

635636
1 using Oceananigans637
2638
3 grid = RectilinearGrid(topology=(Bounded, Flat, Flat), size=4, x=[0, 0.2, 0.3, 0.7, 1])639
4640
5 u = Field{Face, Center, Center}(grid)641
6 c = Field{Center, Center, Center}(grid)642
7643
8 xnodes(u) # [0.0, 0.2, 0.3, 0.7, 1.0]644
9 xnodes(c) # [0.1, 0.25, 0.5, 0.85]645
10 location(∂x(c)) # (Face, Center, Center)646

647648

Listing 12: A one-dimensional staggered grid.

–20–

manuscript submitted to JAMES

a) b)

x

y

x
yz

ui, j
ui-1, j

vi, j

vi, j-1

Ti, j

Ti+1, j+1

vi+1, j

ui, j+1ui-1, j+1 Ti, j+1

vi+1, j-1

Ti+1, j

wi, j, k-1

vi, j, k

ui-1, j, k

wi, j, k

vi, j, k+1

ui-1, j, k

wi-1, j, k

vi-1, j, k+1

ui-2, j, k

wi, j+1, k

vi, j+1, k+1

ui-1, j+1, k+1

Figure 10: Locations of cell centers and interfaces on a two-dimensional (a) and three-dimensional (b)
staggered grid. In (a), the red and blue shaded regions highlight the volumes in the dual u-grid and v-
grid, located at (Face, Center, Center) and (Center, Face, Center), respectively. In (b), the shaded regions
highlight the facial areas used in the fluxes computations, denoted with Ax, Ay , and Az .

4.1 A system of composable operators649

A convention for indexing is associated with staggered locations. Face indices are “left”650

of cell indices. This means that difference operators acting on fields at cells differ from651

those that act on face fields. To illustrate this we introduce Oceananigans-like difference652

operators,653

654655
1 δxᶠᶜᶜ(i, j, k, grid, c) = c[i, j, k] - c[i-1, j, k]656
2 δxᶜᶜᶜ(i, j, k, grid, u) = u[i+1, j, k] - u[i, j, k]657

658659

where superscripts denote the location of the result of the operation. For example, the dif-660

ference δfcc
x acts on fields located at ccc (meaning cell Center in the x, y and z directions661

respectively). Complementary to the difference operators are reconstruction of “interpola-662

tion” operators,663

664665
1 ℑxᶠᶜᶜ(i, j, k, grid, c) = (c[i, j, k] + c[i-1, j, k]) / 2666
2 ℑxᶜᶜᶜ(i, j, k, grid, u) = (u[i+1, j, k] + u[i, j, k]) / 2667

668669

The prefix arguments i, j, k, grid are more than convention: the prefix enables670

system for composing operators. For example, defining671

672673
1 δxᶠᶜᶜ(i, j, k, grid, f::Function, args...) =674
2 f(i, j, k, grid, args...) - f(i-1, j, k, grid, args...)675
3676
4 δxᶜᶜᶜ(i, j, k, grid, f::Function, args...) =677
5 f(i+1, j, k, grid, args...) - f(i, j, k, grid, args...)678

679680

leads to a concise definition of the second-difference operator:681

682683
1 δ²xᶜᶜᶜ(i, j, k, grid, f::Function, a...) = δxᶜᶜᶜ(i, j, k, grid, δxᶠᶜᶜ, f, a...)684

685686

–21–

manuscript submitted to JAMES

Operator composition is used throughout Oceanangians source code to implement stencil687

operations.688

4.2 Tracer flux divergences, advection schemes, and reconstruction689

The divergence of a tracer flux J = Jx x̂ + Jy ŷ + Jz ẑ is discretized conservatively by690

the finite volume method via691

∇ · J ≈ 1

Vc

[
δx
(
AxJx︸ ︷︷ ︸

fcc

)
+ δy

(
AyJy︸ ︷︷ ︸

cfc

)
+ δz

(
AzJz︸ ︷︷ ︸

ccf

)]
, (21)

where δx, δy, δz are difference operators in x, y, z, Vc denotes the volume of the tracer cells,692

Ax, Ay, and Az denote the areas of the tracer cell faces with surface normals x̂, ŷ, and693

ẑ, respectively. Equation (21) indicates the location of each flux component: fluxes into694

tracers cell at ccc are computed at the cell faces located at fcc, cfc, and ccf.695

The advective tracer flux in (9) is written in “conservative form” using incompressibil-696

ity (2), and then discretized similarly to (21) to form697

u · ∇c = ∇ · (uc) ≈ 1

Vc

[
δx
(
Axu|c|x

)
+ δy

(
Ayv|c|y

)
+ δz

(
Azw|c|z

)]
, (22)

where |c|x denotes a reconstruction of c in the x-direction from its native location ccc to the698

tracer cell interface at fcc; |c|y and |c|z in (22) are defined similarly.699

The advective fluxes uc must be computed on interfaces between tracer cells, where700

the approximate value of c must be reconstructed. (Velocity components like u must also701

be reconstructed on interfaces. Within the C-grid framework, we approximate u on tracer702

cell interfaces directly using the values uijk, which represent u averaged over a region en-703

compassing the interface.) The simplest kind of reconstruction is Centered(order=2), which704

is equivalent to taking the average between adjacent cells,705

⟨c⟩i = 1
2 (ci + ci−1) , (23)

where ⟨c⟩i denotes the reconstruction of c on the interface at x = xi−1/2. Also in (23)706

the j, k indices are implied and we have suppressed the direction x to lighten the notation.707

Reconstructions stencils for Center(order=N) are automatically generated for even N up708

to Nmax = 12, where Nmax is an adjustable parameter in the source code. All subsequent709

reconstructions are described in the x-direction only.710

Centered schemes should be used when explicit dissipation justified by a physical ration-711

ale dominates at the grid scale. In scenarios where dissipation is needed solely for artificial712

reasons, we find applications for UpwindBiased schemes, which use an odd-order stencil713

biased against the direction of flow. For example, UpwindBiased(order=1) and UpwindBi-714

ased(order=3) schemes are written715

u[c]1x =

u ci−1 if u > 0 ,

u ci if u < 0 ,
and u[c]3x =

u 1
6 (−ci−2 + 5ci−1 + 2ci) if u > 0 ,

u 1
6 (2ci−1 + 5ci − ci+1) if u < 0 ,

(24)

where [c]Nx denotes N th-order upwind reconstruction in the x-direction. (Note that u[c]Nx = 0716

if u = 0.)717

The compact form of equations (24) demonstrates how upwind schemes introduce vari-718

ance dissipation through numerical discretization. In particular, an UpwindBiased(order=1)719

reconstruction can be rewritten as a sum of a Centered(order=2) discrete advective flux and720

a discrete diffusive flux721

u[c]1x = u
ci + ci−1

2
− κ1

ci − ci−1

∆x
, where κ1 =

|u|∆x

2
. (25)

–22–

manuscript submitted to JAMES

Reordering the UpwindBiased(order=3) advective flux in the same manner recovers a sum722

of a Centered(order=4) advective flux and a 4th-order hyperdiffusive flux, equivalent to a723

finite volume approximation of724

uc+ κ3
∂3c

∂x3
, where κ3 =

|u|∆x3

12
. (26)

UpwindBiased reconstruction can be always reordered to expose a sum of Centered recon-725

struction and a high-order diffusive flux with a velocity-dependent diffusivity. The diffusive726

operator associated with UpwindBiased(order=1) and UpwindBiased(order=3) is enough to727

offset the dispersive errors of the Centered component and, therefore, eliminate the artificial728

explicit diffusion needed for stability purposes. However, this approach does not scale to729

high order since the diffusive operator associated with a high order UpwindBiased scheme730

(5th, 7th, and so on), becomes quickly insufficient to eliminate spurious errors associated731

with the Centered component (Godunov, 1959).732

The inability to achieve high order and, therefore, low dissipation motivated the imple-733

mentation of Weighted, Essentially Non-Oscillatory (WENO) reconstruction (C. Shu, 1997;734

C.-W. Shu, 2009). WENO is a non-linear reconstruction scheme that combines a set of735

odd-order linear reconstructions obtained by stencils that are shifted by a value s relative to736

the canonical UpwindBiased stencil, using a weighting scheme for each stencil that depends737

on the smoothness of the reconstructed field c. Since the constituent stencils are lower-738

order than the WENO order, this strategy yields a scheme whose order of accuracy adapts739

depending on the smoothness of the reconstructed field. In smooth regions high-order is740

retained, while the order quickly decreases in the presence of noisy regions, decreasing the or-741

der of the associated diffusive operator. WENO provies especially useful for high-resolution,742

turbulence-resolving simulations (either at meter or planetary scales) without requiring any743

additional explicit artificial dissipation (Pressel et al., 2017; Silvestri, Wagner, Campin, et744

al., 2024).745

To illustrate how WENO works we consider a fifth-order WENO scheme for u > 0,746

{c}5 = γ0[c]
3,0 + γ1[c]

3,1 + γ2[c]
3,2 , (27)

where the notation [c]3,s denotes an UpwindBiased stencil shifted by s indices, such that747

[c]3
def
= [c]3,0. The shifted upwind stencils [c]N,s

i evaluated at index i are defined748

[c]3,si =
1

6


−ci−1 + 5ci + 2ci+1 for s = −1 ,

2ci−2 + 5ci−1 − ci for s = 0 ,

2ci−3 − 7ci−2 + 11ci−1 for s = 2 .

(28)

The weights γs(c) are determined by a smoothness metric that produces {c}5 ≈ [c]5 when c is749

smooth, but limits to the more diffusive {c}5 ≈ [c]3 when c changes abruptly. Thus WENO750

adaptively introduces dissipation as needed based on the smoothness of c, yielding stable751

simulations with a high effective resolution that require no artificial dissipation. WENO752

can alternatively be interpreted as adding an implicit hyperviscosity that adapts from low-753

to high-order depending on the local nature of the solution. To compute the weights γs(c),754

we use the WENO-Z formulation (Balsara & Shu, 2000).755

The properties of Centered, UpwindBiased, and WENO reconstruction are investigated756

by listing 13, which simulates the advection of a top hat tracer distribution. The results are757

plotted in figure 11.758

759760
1 using Oceananigans761
2762
3 grid = RectilinearGrid(size=128; x=(-4, 8), halo=6, topology=(Periodic, Flat, Flat))763
4 advection = WENO(order=9) # Centered(order=2), UpwindBiased(order=3)764
5 velocities = PrescribedVelocityFields(u=1)765

–23–

manuscript submitted to JAMES

6 model = HydrostaticFreeSurfaceModel(; grid, velocities, advection, tracers=:c)766
7767
8 top_hat(x) = abs(x) > 1 ? 0 : 1768
9 set!(model, c = top_hat)769
10770
11 simulation = Simulation(model, Δt=1/grid.Nx, stop_time=4)771
12 run!(simulation)772

773774

Listing 13: A script that advects a top hat tracer profile in one-dimension with a constant prescribed velocity.
We use halo=6 to accommodate schemes up to WENO(order=11).

Figure 11: Advection of a top hat tracer distribution in one-dimension using various advection schemes.
Centered and Upwind

4.2.1 Discretization of momentum advection775

The discretization of momentum advection with a flux form similar to (22) is more com-776

plex than the tracer case because both the advecting velocity and advected velocity require777

reconstruction. We use the method described by Ghosh and Baeder (2012) and Pressel et778

al. (2015), wherein advecting velocities are constructed with a high-order Centered scheme779

when the advected velocity component is reconstructed with a high-order UpwindBiased780

or WENO scheme. We have also developed a novel WENO-based method for discretizing781

momentum advection in the rotational or “vector invariant” form especially appropriate for782

representing mesoscale and submesoscale turbulent advection on curvilinear grids (Silvestri,783

Wagner, Campin, et al., 2024).784

5 Parallelization785

Oceananigans supports distributed computations with slab and pencil domain decom-786

position. The interior domain is extended using “halo” or “ghost” cells that hold the results787

of interprocessor boundaries. “halo” cells are updated before the computation of tendencies788

through asynchronous send / receive operations using the message passing interface (MPI)789

Julia library (Byrne et al., 2021). For a detailed description of the parallelization strategy of790

the HydrostaticFreeSurfaceModel; see Silvestri, Wagner, Constantinou, et al. (2024). The791

NonhydrostaticModel implements the same overlap of communication and computation for792

halo exchange before the calculation of tendencies. For the FFT-based three-dimensional793

pressure solver, we implement a transpose algorithm that switches between x-local, y-local,794

and z-local configurations to compute efficiently the discrete transforms. The transpose795

algorithm for the distributed FFT solver is shown in figure 12.796

–24–

manuscript submitted to JAMES

x
y

z

FFT in z FFT in xFFT in y

transpose z to y transpose y to x

iFFT in z iFFT in xiFFT in y

transpose y to z transpose x to y

Solve Poisson equation
in Fourier space

Figure 12: A schematic showing the distributed Poisson solver procedure with a pencil parallelization that
divides the domain in two ranks in both x and y. The schematic highlights the data layout in the ranks
during each operation.

6 Conclusions797

This paper describes GPU-based ocean modeling software called “Oceananigans” writ-798

ten in the high-level Julia programming language. Oceananigans’ exposes ground-breaking799

performance for simulations of oceanic motion at any scale with an innovative user interface800

design that makes simple simulations easy and complex, creative simulations possible.801

Oceananigans wields a brute force strategy for accuracy: simple, C-grid, WENO nu-802

merics for turbulence resolving simulations coupled to the raw power of GPU acceleration.803

This strategy bucks the trend in dynamical core numerics, especially for oceanography,804

which in recent years has trended toward unstructured grids, vertically-Lagrangian coordi-805

nates. Yet we anticipate that GPUs, driven by machine learning, will only become more806

powerful. We hope therefore that Oceananigans brute-force strategy will continue to bear807

fruit. Atmospheric dycores may also benefit from such simplifications, moving away from808

vertically-Lagrangian coordinates, for example.809

Each achievement — ground-breaking performance, physics flexibility, or an innova-810

tive design — would, on their own, enable scientific breakthroughs. By assembling these811

achievements into a single package, however, and eliminating the typical trade-offs between812

performance, flexibility, and ease-of-use, Oceananigans aims at the even higher goal of ac-813

celerating the pace of progress in model development. This matters because ocean modeling814

software will have to continue to evolve rapidly to keep pace with the advancing state of815

the field to remain cutting-edge: to continue to use the world’s largest super computers, to816

continue to present the most productive possible abstractions for both users and developers,817

to ensure that the pace of parameterization development is as fast as it could be. Right818

now, ocean model development is arguably too slow.819

Appendix A Time stepping and time discretization820

In this section we describe time stepping methods and time discretization options for821

the NonhydrostaticModel and the HydrostaticFreeSurfaceModel.822

A1 Time discretization for tracers823

Tracers are stepped forward with similar schemes in the NonhydrostaticModel and the824

HydrostaticFreeSurfaceModel, each of which includes optional implicit treatment of vertical825

–25–

manuscript submitted to JAMES

diffusion terms. Equation (9) is abstracted into two components,826

∂tc = Gc + ∂z (κz∂zc) , (A1)

where, if specified, κz is the vertical diffusivity of c to be treated with a VerticallyIm-827

plicitTimeDiscretization, and Gc is the remaining component of the tracer tendency from828

equation 9. (Vertical diffusion treated with an ExplicitTimeDiscretization is also absorbed829

into Gc.) We apply a semi-implicit time discretization of vertical diffusion to approximate830

integral of (A1) from tm to tm+1,831

(1−∆t ∂z κ
m
z ∂z) c

m+1 = cm +

∫ tm+1

tm
Gc dt , (A2)

where ∆t
def
= tm+1 − tm. The tendency integral

∫ tm+1

tm
Gc dt is evaluated either using a832

“quasi”-second order Adams-Bashforth scheme (QAB2, which is actually first-order lets add833

a reference), or a low-storage third-order Runge-Kutta scheme (RK3). For QAB2, the834

integral in (A2) spans the entire time-step and takes the form835

1

∆t

∫ tm+1

tm
Gc dt ≈

(
3
2 + χ

)
Gm

c −
(
1
2 + χ

)
Gm−1

c , (A3)

where χ is a small parameter, chosen by default to be χ = 0.1. QAB2 requires one tendency836

evaluation per time-step. For RK3, the indices m = (1, 2, 3) correspond to substages, and837

the integral in (A2) takes the form838

1

∆t

∫ tm+1

tm
Gc dt ≈ γmGm

c − ζmGm−1
c , (A4)

where γ = (8/15, 5/12, 3/4) and ζ = (0, 17/60, 5/12) for m = (1, 2, 3) respectively. RK3839

requires three evaluations of the tendency Gc per time-step. RK3 is self-starting because840

ζ1 = 0, while QAB2 must be started with a forward-backwards Euler step (the choice841

χ = −1/2 in (A3)). Equation (A2) is solved with a tridiagonal algorithm following a second-842

order spatial discretization of ∂zκn
z ∂zc

m+1 — either once per time-step for QAB2, or three843

times for each of the RK3’s three stages.844

VerticallyImplicitTimeDiscretization permits longer time-steps when using fine vertical845

spacing. Listing 14 illustrates the differences between vertically-implicit and explicit time846

discretization using one-dimensional diffusion of by a top-hat diffusivity profile. The results847

are shown in figure A1.848

849850
1 using Oceananigans851
2852
3 grid = RectilinearGrid(size=20, z=(-2, 2), topology=(Flat, Flat, Bounded))853
4 time_discretization = VerticallyImplicitTimeDiscretization()854
5 κ(z, t) = exp(-z^2)855
6 closure = VerticalScalarDiffusivity(time_discretization; κ)856
7 model = HydrostaticFreeSurfaceModel(; grid, closure, tracers=:c)857

858859

Listing 14: Diffusion of a tracer by a top hat tracer diffusivity profile using various time steps and time
discretizations.

A2 The pressure correction method for momentum in NonhydrostaticModel860

The NonhydrostaticModel uses a pressure correction method for the momentum equa-861

tion (6) that ensures ∇ · u = 0. We rewrite (6) as862

∂tu = −∇p+ b ẑ +Gu + ∂z (νz∂zu) , (A5)

–26–

manuscript submitted to JAMES

Figure A1: Simulations of tracer diffusion by a top hat diffusivity profile using various choices of time-
discretization and time-step size. With a long time-step of ∆t = 0.5, ExplicitTimeDiscretization is unstable
while VerticallyImplicitTimeDiscretization is stable. Let the vertically-implicit solution depends on the long
time-step ∆t = 0.5, as revealed by comparison with ExplicitTimeDiscretization using ∆t = 10−4.

where, if specified, νz is the vertical component of the viscosity that will be treated with a863

vertically-implicit time discretization, ∇p is the total pressure gradient, and Gu is the rest864

of the momentum tendency. We decompose p into a “hydrostatic anomaly” p′ tied to the865

density anomaly ρ′, and a nonhydrostatic component p̃, such that866

p = p̃+ p′ , where ∂zp
′ def
= b . (A6)

By computing ph in (A6), we recast (A5) without b and with ∇p = ∇pn + ∇hph. Next,867

integrating (A5) in time from tm to tm+1 yields868

um+1 = um +

∫ tm+1

tm
[Gu −∇p̃+ ∂z (νz∂zu)] dt . (A7)

Next we introduce the predictor velocity ũ, defined such that869

(1−∆t ∂zν
m
z ∂z) ũ = um +

∫ tm+1

tm
Gu dt , (A8)

or in other words, defined as a velocity-like field that cannot feel nonhydrostatic pressure870

gradient ∇p̃. Equation (A8) uses a semi-implicit treatment of vertical momentum diffusion871

which is similar but slightly different to the treatment of tracer diffusion in (A2),872 ∫ tm+1

tm
∂z (νz∂zu) dt ≈ ∆t ∂z (ν

m
z ∂zũ) . (A9)

The integral in (A8) is evaluated with the same methods used for tracers — either (A3) for873

QAB2 or (A4) when using RK3. With a second-order discretization of vertical momentum874

diffusion, the predictor velocity in (A8) may be computed with a tridiagonal solver.875

Introducing a fully-implicit time discretization for p̃,876 ∫ tm+1

tm
∇p̃ dt ≈ ∆t∇p̃m+1 , (A10)

and inserting (A10) into (A8), we derive the pressure correction to the predictor velocity,877

um+1 − ũ = −∆t∇p̃m+1 . (A11)

–27–

manuscript submitted to JAMES

The final ingredient needed to complete the pressure correction scheme is an equation878

for the nonhydrostatic pressure p̃m+1
n . For this we form ∇· (A11) and use ∇·um+1 = 0 to879

obtain a Poisson equation for p̃m+1
n ,880

∇2p̃m+1 =
∇ · ũ
∆t

. (A12)

Boundary conditions for equation (A12) may be derived by evaluating n̂ · (A7) on the881

boundary of the domain.882

On RectilinearGrids, we solve (A12) using an eigenfunction expansion of the discrete883

second-order Poisson operator ∇2 evaulated via the fast Fourier transform (FFT) in eq-884

uispaced directions (Schumann & Sweet, 1988) plus a tridiagonal solve in variably-spaced885

directions. With the FFT-based solver, boundary conditions on p̃m+1 are accounted for886

by enforcing n̂ · ũ = n̂ · um+1 on boundary cells — which is additional and separate887

from the definition ũ in (A9). This alteration of ũ on the boundary implicitly contributes888

the appropriate terms that account for inhomogeneous boundary-normal pressure gradients889

n̂ · ∇p̃m+1 ̸= 0 to the right-hand-side of (A12) during the computation of ∇ · ũ.890

A preconditioned conjugate gradient iteration may be used on non-rectilinear grids,891

including complex domains. For domains that immerse an irregular boundary within a892

RectilinearGrid, we have implemented an efficient, rapidly-converging preconditioner that893

leverages the FFT-based solver with masking applied to immersed cells. The FFT-based894

preconditioner for solving the Poisson equation in irregular domains will be described in a895

forthcoming paper.896

A3 Time discretization of the HydrostaticFreeSurfaceModel897

The HydrostaticFreeSurfaceModel uses a linear free surface formulation paired with a898

geopotential vertical coordinate that may be integrated in time using either a fully Explic-899

itFreeSurface, an ImplicitFreeSurface utilizing a two-dimensional elliptical solve, or a Spli-900

tExplicitFreeSurface. The latter free surface solver can also be used to solve the primitive901

equations with a non-linear free surface formulation and a free-surface following (z⋆) verti-902

cal coordinate. For brevity, we describe here only the SplitExplicitFreeSurface, which is the903

most generally useful method. The SplitExplicitFreeSurface substeps the depth-integrated904

or “barotropic” horizontal velocity Uh along with the free surface displacement η using a905

short time step while and the depth-dependent, “baroclinic” velocities, along with tracers,906

are relatively stationary.907

The barotropic horizontal transport Uh is defined908

Uh
def
=

∫ η

−H

uh dz , (A13)

where uh = (u, v) is the total horizontal velocity and H is the depth of the fluid.909

Similarly integrating the horizontal momentum equations (14) from z = −H to z = η910

yields an evolution equation for Uh,911

∂tUh = −g(H + η)∇hη +

∫ η

−H

Guh dz , (A14)

where Guh includes all the tendency terms that evolve “slowly” compared to the barotropic912

mode:913

Guh = −(u · ∇)uh − f × u−∇ · τ + Fh . (A15)

The evolution equation for the free surface is obtained by integrating the continuity equa-914

tion (17) in z to obtain ∇ ·Uh = −w|z=η, and inserting this into (18) to find915

∂tη = −∇h ·Uh . (A16)

–28–

manuscript submitted to JAMES

The pair of equations (A14) and (A16) characterize the evolution of the barotropic mode,916

which involves faster time-scales than the baroclinic mode evolution described by equations917

(14). To resolve both modes, we use a split-explicit algorithm where the barotropic mode is918

advanced in time using a smaller time-step than the one used for three-dimensional baroclinic919

variables. In particular, a predictor three-dimensional velocity is evolved without accounting920

for the barotropic mode evolution, using the QAB2 scheme described by A3. We denote921

this “predictor” velocity, again, with a tilde as done in section A2.922

(1−∆t ∂zν
m
z ∂z)ũh − um

h ≈
∫ tm+1

tm
Guh dt . (A17)

We then compute the barotropic mode evolution by sub-stepping M times the barotropic923

equations using a forward-backward time-stepping scheme and a time-step ∆τ = ∆t/N ,924

ηn+1 − ηn = −∆τ∇h ·Un
h , (A18)

925

Un+1
h −Un

h = −∆τ

[
g(H + η)∇hη

n+1 − 1

∆t

∫ η

−H

∫ tm+1

tm
Guh dtdz

]
. (A19)

The slow tendency terms are frozen in time during substepping. The barotropic quantities926

are averaged within the sub-stepping with927

Ūh =
M∑
n=1

anU
n
h , η̄ =

M∑
n=1

anη
n , (A20)

where M is the number of substeps per baroclinic step, and an are the weights are calculated928

from the provided averaging kernel. The default choice of averaging kernel is the minimal929

dispersion filters developed by Shchepetkin and McWilliams (2005). The number of substeps930

M is calculated to center the averaging kernel at tm+1. As a result, the barotropic subcycling931

overshoots the baroclinic step, i.e. M > N with a maximum of M = 2N . Finally, the932

barotropic mode is reconciled to the baroclinic mode with a correction step933

um+1
h = ũh +

1

H + η

(
Ūh −

∫ η

−H

ũh dz
)

. (A21)

The barotropic variables are then reinitialized for evolution in the next barotropic mode934

evolution using the time-averaged η̄ and Ūh.935

–29–

manuscript submitted to JAMES

Appendix B Table of numerical examples936

Description Code Visualization

2D turbulence using WENO(order=9) advection listing 1 fig 1

2D turbulence with moving tracer source listing 2 fig 1

DNS and LES of flow around a cylinder at various Re listing 4 fig 2

DNS of cabbeling in freshwater listing 5 fig 3

LES of the Eady problem with WENO(order=9) listing 6 fig 4

Tidally-oscillating flow past Three Tree Point listing 7 fig 5

Internal waves generated by tidal forcing over bathymetry listing 8 fig 6

Comparison of vertical mixing parameterizations listing 9 fig 7

Near-global ocean simulation with ClimaOcean listing 10 fig 8

Visualization of the finite volume discretization listing 11 fig 9

One-dimensional advection of a top-hat tracer profile listing 13 fig 11

Tracer diffusion with various time discretizations listing 14 fig A1

937

References938

Arakawa, A. (1977). Computational design of the basic dynamical processes of the UCLA939

general circulation model. Methods in Computational Physics/Academic Press.940

Balsara, D., & Shu, C. (2000). Monotonicity preserving weighted essentially non-oscillatory941

schemes with increasingly high order of accuracy. Journal of Computational Physics,942

160(2), 405-452. doi: 10.1006/jcph.2000.6443943

Besard, T., Foket, C., & De Sutter, B. (2018). Effective extensible programming: unleashing944

Julia on GPUs. IEEE Transactions on Parallel and Distributed Systems, 30(4), 827–945

841.946

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach947

to numerical computing. SIAM review, 59(1), 65–98.948

Boccaletti, G., Ferrari, R., & Fox-Kemper, B. (2007). Mixed layer instabilities and restrat-949

ification. Journal of Physical Oceanography, 37(9), 2228–2250.950

Bou-Zeid, E., Meneveau, C., & Parlange, M. (2005). A scale-dependent lagrangian dynamic951

model for large eddy simulation of complex turbulent flows. Physics of fluids, 17(2).952

Bryan, K. (1969). A numerical method for the study of the circulation of the world ocean.953

Journal of computational physics, 135(2), 154–169.954

Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., & Brown, B. P. (2020). Dedalus: A955

flexible framework for numerical simulations with spectral methods. Physical Review956

Research, 2(2), 023068.957

Byrne, S., Wilcox, L. C., & Churavy, V. (2021). MPI.jl: Julia bindings for the Message958

Passing Interface. In Proceedings of the JuliaCon Conferences (Vol. 1, p. 68). doi:959

10.21105/jcon.00068960

Callies, J., & Ferrari, R. (2018). Baroclinic instability in the presence of convection. Journal961

of Physical Oceanography, 48(1), 45–60.962

Chassignet, E. P., & Xu, X. (2017). Impact of horizontal resolution (1/12 to 1/50) on Gulf963

Stream separation, penetration, and variability. Journal of Physical Oceanography,964

47(8), 1999–2021.965

Chassignet, E. P., & Xu, X. (2021). On the importance of high-resolution in large-scale966

ocean models. Advances in Atmospheric Sciences, 38, 1621–1634.967

–30–

manuscript submitted to JAMES

Churavy, V. (2024). KernelAbstractions.jl. Retrieved from https://doi.org/10.5281/968

zenodo.13773520969

Cox, M. D. (1984). A primitive equation, 3-dimensional model of the ocean (Tech. Rep.970

No. 1). Princeton, NJ: NOAA Geophysical Fluid Dynamics Laboratory.971

Craik, A. D., & Leibovich, S. (1976). A rational model for Langmuir circulations. Journal972

of Fluid Mechanics, 73(3), 401–426.973

Danilov, S., Sidorenko, D., Wang, Q., & Jung, T. (2017). The finite-volume sea ice–ocean974

model (fesom2). Geoscientific Model Development, 10(2), 765–789.975

Dong, J., Fox-Kemper, B., Wenegrat, J. O., Bodner, A. S., Yu, X., Belcher, S., & Dong,976

C. (2024). Submesoscales are a significant turbulence source in global ocean surface977

boundary layer. Nature Communications, 15(1), 9566.978

Eady, E. T. (1949). Long waves and cyclone waves. Tellus, 1(3), 33–52.979

Forget, G., Campin, J.-M., Heimbach, P., Hill, C., Ponte, R., & Wunsch, C. (2015). Ecco980

version 4: An integrated framework for non-linear inverse modeling and global ocean981

state estimation. Geoscientific Model Development, 8(10), 3071–3104.982

Ghosh, D., & Baeder, J. D. (2012). High-order accurate incompressible Navier–Stokes983

algorithm for vortex-ring interactions with solid wall. AIAA journal, 50(11), 2408–984

2422.985

Godunov, S. K. (1959). A difference scheme for numerical solution of discontinuous solution986

of hydrodynamic equations. Matematicheskii Sbornik, 47 , 271–306. (Translated by987

US Joint Publications Research Service, JPRS 7226, 1969)988

Griffies, S. M., Adcroft, A., & Hallberg, R. W. (2020). A primer on the vertical lagrangian-989

remap method in ocean models based on finite volume generalized vertical coordinates.990

Journal of Advances in Modeling Earth Systems, 12(10), e2019MS001954.991

Griffies, S. M., Pacanowski, R. C., & Hallberg, R. W. (2000). Spurious diapycnal mixing992

associated with advection in a z-coordinate ocean model. Monthly Weather Review,993

128(3), 538–564.994

Griffies, S. M., Stouffer, R. J., Adcroft, A. J., Bryan, K., Dixon, K. W., Hallberg, R., …995

Rosati, A. (2015). A historical introduction to MOM. URL https://www. gfdl. noaa.996

gov/wp-content/uploads/2019/04/mom_history_2017 , 9.997

Häfner, D., Nuterman, R., & Jochum, M. (2021). Fast, cheap, and turbulent—global ocean998

modeling with GPU acceleration in Python. Journal of Advances in Modeling Earth999

Systems, 13(12), e2021MS002717.1000

Halliwell, G. R. (2004). Evaluation of vertical coordinate and vertical mixing algorithms in1001

the HYbrid-Coordinate Ocean Model (HYCOM). Ocean Modelling, 7(3-4), 285–322.1002

Huang, N. E. (1979). On surface drift currents in the ocean. Journal of Fluid Mechanics,1003

91(1), 191–208.1004

Kärnä, T., Kramer, S. C., Mitchell, L., Ham, D. A., Piggott, M. D., & Baptista, A. M.1005

(2018). Thetis coastal ocean model: discontinuous Galerkin discretization for the1006

three-dimensional hydrostatic equations. Geoscientific Model Development, 11(11),1007

4359–4382.1008

Kiss, A. E., Hogg, A. M., Hannah, N., Boeira Dias, F., Brassington, G. B., Chamberlain,1009

M. A., … others (2020). Access-om2 v1. 0: a global ocean–sea ice model at three1010

resolutions. Geoscientific Model Development, 13(2), 401–442.1011

Korn, P., Brüggemann, N., Jungclaus, J. H., Lorenz, S., Gutjahr, O., Haak, H., … others1012

(2022). Icon-o: The ocean component of the icon earth system model—global simula-1013

tion characteristics and local telescoping capability. Journal of Advances in Modeling1014

Earth Systems, 14(10), e2021MS002952.1015

Leclair, M., & Madec, G. (2011). z-coordinate, an arbitrary lagrangian–eulerian coordinate1016

separating high and low frequency motions. Ocean Modelling, 37(3-4), 139–152.1017

Lilly, D. K. (1983). Stratified turbulence and the mesoscale variability of the atmosphere.1018

Journal of the Atmospheric Sciences, 40(3), 749–761.1019

Marshall, J., Adcroft, A., Hill, C., Perelman, L., & Heisey, C. (1997). A finite-volume,1020

incompressible Navier Stokes model for studies of the ocean on parallel computers.1021

Journal of Geophysical Research: Oceans, 102(C3), 5753–5766.1022

–31–

https://doi.org/10.5281/zenodo.13773520
https://doi.org/10.5281/zenodo.13773520
https://doi.org/10.5281/zenodo.13773520

manuscript submitted to JAMES

Marshall, J., Hill, C., Perelman, L., & Adcroft, A. (1997). Hydrostatic, quasi-hydrostatic,1023

and nonhydrostatic ocean modeling. Journal of Geophysical Research: Oceans,1024

102(C3), 5733–5752.1025

McDougall, T. J., & Barker, P. M. (2011). Getting started with TEOS-10 and the Gibbs1026

Seawater (GSW) oceanographic toolbox. Scor/iapso WG, 127(532), 1–28.1027

Molemaker, M. J., McWilliams, J. C., & Capet, X. (2010). Balanced and unbalanced routes1028

to dissipation in an equilibrated eady flow. Journal of Fluid Mechanics, 654, 35–63.1029

Pawlak, G., MacCready, P., Edwards, K., & McCabe, R. (2003). Observations on the1030

evolution of tidal vorticity at a stratified deep water headland. Geophysical Research1031

Letters, 30(24).1032

Pearson, B. (2018). Turbulence-induced anti-Stokes flow and the resulting limitations of1033

large-eddy simulation. Journal of Physical Oceanography, 48(1), 117–122.1034

Petersen, M. R., Jacobsen, D. W., Ringler, T. D., Hecht, M. W., & Maltrud, M. E. (2015).1035

Evaluation of the arbitrary Lagrangian–Eulerian vertical coordinate method in the1036

MPAS-Ocean model. Ocean Modelling, 86, 93–113.1037

Phillips, N. A. (1956). The general circulation of the atmosphere: A numerical experiment.1038

Quarterly Journal of the Royal Meteorological Society, 82(352), 123–164.1039

Pressel, K. G., Kaul, C. M., Schneider, T., Tan, Z., & Mishra, S. (2015). Large-eddy1040

simulation in an anelastic framework with closed water and entropy balances. Journal1041

of Advances in Modeling Earth Systems, 7(3), 1425–1456.1042

Pressel, K. G., Mishra, S., Schneider, T., Kaul, C. M., & Tan, Z. (2017). Numerics and1043

subgrid-scale modeling in large eddy simulations of stratocumulus clouds. Journal of1044

advances in modeling earth systems, 9(2), 1342–1365.1045

Ramadhan, A., Wagner, G., Hill, C., Campin, J.-M., Churavy, V., Besard, T., … Marshall,1046

J. (2020). Oceananigans.jl: Fast and friendly geophysical fluid dynamics on GPUs.1047

Journal of Open Source Software, 5(53).1048

Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., & Maltrud, M. (2013).1049

A multi-resolution approach to global ocean modeling. Ocean Modelling, 69, 211–232.1050

Roquet, F., Madec, G., Brodeau, L., & Nycander, J. (2015). Defining a simplified yet1051

“realistic” equation of state for seawater. Journal of Physical Oceanography, 45(10),1052

2564–2579.1053

Roquet, F., Madec, G., McDougall, T. J., & Barker, P. M. (2015). Accurate polynomial ex-1054

pressions for the density and specific volume of seawater using the TEOS-10 standard.1055

Ocean Modelling, 90, 29–43.1056

Rozema, W., Bae, H. J., Moin, P., & Verstappen, R. (2015). Minimum-dissipation models1057

for large-eddy simulation. Physics of Fluids, 27(8).1058

Schumann, U., & Sweet, R. A. (1988). Fast Fourier transforms for direct solution of1059

Poisson’s equation with staggered boundary conditions. Journal of Computational1060

Physics, 75(1), 123–137.1061

Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system1062

(ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model.1063

Ocean modelling, 9(4), 347–404.1064

Shu, C. (1997). Essentially non-oscillatory and weighted essentially non-oscillatory schemes1065

for hyperbolic conservation laws (ICASE Report No. 97-65). Institute for Computer1066

Applications in Science and Engineering, NASA Langley Research Center.1067

Shu, C.-W. (2009). High order weighted essentially nonoscillatory schemes for convection1068

dominated problems. SIAM review, 51(1), 82–126.1069

Silvestri, S., Wagner, G. L., Campin, J.-M., Constantinou, N. C., Hill, C. N., Souza, A., &1070

Ferrari, R. (2024). A new WENO-based momentum advection scheme for simulations1071

of ocean mesoscale turbulence. Journal of Advances in Modeling Earth Systems, 16(7),1072

e2023MS004130.1073

Silvestri, S., Wagner, G. L., Constantinou, N. C., Hill, C. N., Campin, J.-M., Souza, A. N., …1074

Ferrari, R. (2024). A GPU-based ocean dynamical core for routine mesoscale-resolving1075

climate simulations. Authorea Preprints. doi: 10.22541/essoar.171708158.82342448/1076

v11077

–32–

manuscript submitted to JAMES

Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I.1078

The basic experiment. Monthly weather review, 91(3), 99–164.1079

Stone, P. H. (1971). Baroclinic stability under non-hydrostatic conditions. Journal of Fluid1080

Mechanics, 45(4), 659–671.1081

Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., … others1082

(2018). Jra-55 based surface dataset for driving ocean–sea-ice models (jra55-do). Ocean1083

Modelling, 130, 79–139.1084

Umlauf, L., & Burchard, H. (2005). Second-order turbulence closure models for geophysical1085

boundary layers. a review of recent work. Continental Shelf Research, 25(7-8), 795–1086

827.1087

Vanneste, J., & Young, W. R. (2022). Stokes drift and its discontents. Philosophical1088

Transactions of the Royal Society A, 380(2225), 20210032.1089

Vreugdenhil, C. A., & Taylor, J. R. (2018). Large-eddy simulations of stratified plane1090

Couette flow using the anisotropic minimum-dissipation model. Physics of Fluids,1091

30(8).1092

Wagner, G. L., Chini, G. P., Ramadhan, A., Gallet, B., & Ferrari, R. (2021). Near-inertial1093

waves and turbulence driven by the growth of swell. Journal of Physical Oceanography,1094

51(5), 1337–1351.1095

Wagner, G. L., Hillier, A., Constantinou, N. C., Silvestri, S., Souza, A. N., Burns, K., … oth-1096

ers (2024). Formulation and calibration of CATKE, a one-equation parameterization1097

for microscale ocean mixing. Authorea Preprints. doi: 10.48550/arXiv.2306.132041098

Warner, S. J., & MacCready, P. (2014). The dynamics of pressure and form drag on1099

a sloping headland: Internal waves versus eddies. Journal of Geophysical Research:1100

Oceans, 119(3), 1554–1571.1101

–33–

