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Stimulated generation: extraction of energy from
balanced flow by near-inertial waves
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We study stimulated generation – the transfer of energy from balanced flows
to existing internal waves – using an asymptotic model that couples barotropic
quasi-geostrophic flow and near-inertial waves with eimz vertical structure, where m
is the vertical wavenumber and z is the vertical coordinate. A detailed description of
the conservation laws of this vertical-plane-wave model illuminates the mechanism of
stimulated generation associated with vertical vorticity and lateral strain. There are two
sources of wave potential energy, and corresponding sinks of balanced kinetic energy:
the refractive convergence of wave action density into anti-cyclones (and divergence
from cyclones); and the enhancement of wave-field gradients by geostrophic straining.
We quantify these energy transfers and describe the phenomenology of stimulated
generation using numerical solutions of an initially uniform inertial oscillation
interacting with mature freely evolving two-dimensional turbulence. In all solutions,
stimulated generation co-exists with a transfer of balanced kinetic energy to large
scales via vortex merging. Also, geostrophic straining accounts for most of the
generation of wave potential energy, representing a sink of 10 %–20 % of the initial
balanced kinetic energy. However, refraction is fundamental because it creates the
initial eddy-scale lateral gradients in the near-inertial field that are then enhanced by
advection. In these quasi-inviscid solutions, wave dispersion is the only mechanism
that upsets stimulated generation: with a barotropic balanced flow, lateral straining
enhances the wave group velocity, so that waves accelerate and rapidly escape
from straining regions. This wave escape prevents wave energy from cascading to
dissipative scales.

Key words: internal waves, ocean processes, quasi-geostrophic flows

1. Introduction
The inverse cascade, acting on balanced ocean macroturbulence, transfers energy

towards large spatial scales. However, a statistically steady ocean circulation requires
energy dissipation at the same rate as it is supplied by the wind. Thus equilibration
of the ocean macroturbulence requires ageostrophic processes, acting in opposition
to the inverse cascade, to produce a transfer of energy towards the centimetre

† Email address for correspondence: crocha@ucsd.edu
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Study Framework Energy transfers from a mean
flow to existing near-inertial
waves are referred to as

Gertz & Straub (2009) Barotropic two-dimensional
double-gyre solutions coupled
with forced three-dimensional
near-inertial waves.

Two- to three-dimensional
energy transfer

Thomas (2012) Near-inertial waves in a
baroclinic geostrophic flow
undergoing frontogenesis.

Deformation shear production

Taylor & Straub (2016) Boussinesq channel flow with
both high- and low-frequency
forcing.

Advective sink

Barkan, Winters &
McWilliams (2016)

Boussinesq channel flow with
both high- and low-frequency
forcing.

Direct extraction

Shakespeare & Hogg (2017) Boussinesq channel flow with
low-frequency forcing.
Spontaneous generation in the
surface layer and stimulated
generation in the interior.

Interior amplification

TABLE 1. Summary of model-based studies of energy extraction from balanced flow by
near-inertial waves.

scales at which molecular viscosity is effective. Mechanisms that might result in this
down-scale transfer include, but are not limited to, surface and benthic boundary-layer
turbulence, lee-wave generation by mesoscale eddies negotiating bottom topography
and the spontaneous generation of internal waves by upper-ocean frontal instabilities;
see Nagai et al. (2015) for a recent review.

We focus on a mechanism first identified by Gertz & Straub (2009): externally
forced near-inertial waves might provide an energy sink for large-scale balanced flow.
Since Gertz & Straub (2009), several other studies, summarized in table 1, have
argued for significant energy transfer from balanced flows to near-inertial waves.
A common aspect of the studies in table 1 is that the near-inertial waves are first
introduced by external forcing (e.g. wind) at the inertial frequency and then grow by
extracting energy from the balanced flow.

(An exception in table 1 is the study of Shakespeare & Hogg (2017), in which
near-inertial waves are generated spontaneously – without external forcing – at
density fronts near the surface. These waves then radiate vertically downwards into
the interior and amplify by extracting energy from deep balanced flow. We have
included Shakespeare & Hogg (2017) in table 1 because, as far as deep interior
amplification is concerned, the details of the shallow generation process are probably
immaterial.)

The studies in table 1 have shown that externally generated near-inertial waves
can extract energy from a pre-existing balanced flow. Those studies, however, have
diverse methodology and diagnostic framework, so there is not a consensus that
the observed amplification of near-inertial waves results from a single mechanism.
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Stimulated generation 419

In other words, it is possible that near-inertial wave amplification occurs through a
variety of mechanisms and each instance must be analysed and understood on its own
peculiar terms. But in a certain limit, described in § 2.2, there is a single underlying
mechanism – stimulated generation – that is responsible for energy transfer between
waves and balanced flow (Xie & Vanneste 2015, XV hereafter). While it is unclear
whether this limit applies to the studies in table 1, XV provide a robust yet simple
theoretical framework for studying energy transfers between balanced flows and
near-inertial waves.

Using a variational formulation of the generalized Lagrangian mean, XV derived
a phase-averaged model of the coupling between weakly nonlinear near-inertial
waves and quasi-geostrophic (QG) flow. Wagner & Young (2016) derived a similar
coupled model via Eulerian multiple-time expansion; these authors include the second
harmonic of the primary near-inertial wave and simplify the wave dynamics by
assuming moderate QG vertical shears. In both coupled models the near-inertial
waves (NIW) are governed by the equation of Young & Ben Jelloul (1997) (YBJ
hereafter) and the balanced flow satisfies QG dynamics – the waves contribute
phase-averaged quadratic terms of the same order as the QG potential vorticity (PV).
Salmon (2016) provides a useful perspective on this ‘NIW-QG’ model; without
assuming that the waves are near-inertial, and within a single variational framework,
Salmon unifies XV’s model with the wave-mean flow models of Bühler & McIntyre
(1998) and Wagner & Young (2015). Salmon also emphasizes a revealing analogy
between vortex–wave interactions and classical electrodynamics.

To distinguish energy extraction by existing waves from spontaneous generation,
and to complete an electrodynamic analogy, XV refer to the transfer of energy from
balanced flow to externally forced near-inertial waves as stimulated generation. The
more widely studied process of spontaneous generation is the emission of internal
waves arising from the slow evolution of balanced flow in the absence of external
forcing at wave frequencies (Vanneste 2013). Spontaneous generation is inefficient
at small and moderate Rossby numbers and its global impact on ocean energetics
is probably small (Danioux et al. 2012; Nagai et al. 2015). Also, spontaneous
generation is localized at sharp submesoscale fronts with order-one Rossby number
(e.g. Shakespeare & Hogg 2017) while the stimulated variety operates even at the
small Rossby numbers characteristic of most interior oceanic conditions, provided
only that internal waves are introduced by external forcing. Throughout the ocean,
internal waves are reliably forced by wind and tides and thus stimulated generation
is a leading contender as a mesoscale energy sink.

Although XV and Wagner & Young (2016) use significantly different approaches,
their results are consistent with one another. This consistency indicates that
the NIW-QG model provides the unique small-amplitude evolution equations
describing the interaction between near-inertial waves and geostrophic flow. In the
small-amplitude limit the flow can be unambiguously separated into weakly nonlinear
internal waves and quasi-geostrophic eddies, with perturbative coupling between
waves and eddies (Salmon 2016). To the extent that the studies in table 1 are also in
this weak-interaction limit, their results should – in principle – be described by the
NIW-QG model. ‘In principle’ because the distinction between the Lagrangian-mean
and Eulerian-mean velocities complicates the diagnosis of energy transfers between
eddies and waves (see § 6 for further discussion) and because the Rossby number
is large in some studies (e.g. Barkan et al. 2016). Frontal sharpening and low
Richardson number processes, which are described in Thomas (2012), are outside the
scope of the NIW-QG model.
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420 C. B. Rocha, G. L. Wagner and W. R. Young

XV emphasize that a central feature of the NIW-QG model is that there are two
integral energy conservation laws for: (i) near-inertial kinetic energy and (ii) the sum
of near-inertial potential energy and total balanced energy. The inevitable reduction of
near-inertial length scales by advection and refraction is accompanied by an increase
in wave potential energy and, because of conservation law (ii), a reduction in the
energy of the balanced flow. These features, and the necessity of an externally forced
wave, are the defining characteristics of stimulated generation.

Here we investigate perhaps the simplest example of stimulated generation obtained
from the NIW-QG model by assuming barotropic QG flow and vertically planar near-
inertial waves. Because the balanced flow is barotropic, while the near-inertial wave
is three-dimensional, this ‘vertical-plane-wave model’ resembles the original scenario
of Gertz & Straub (2009). We show that the convergence of wave kinetic energy into
anti-cyclones and geostrophic straining of the waves reduces the wave length scale,
amplifies gradients of wave amplitude and converts balanced kinetic energy into near-
inertial potential energy.

2. The vertical-plane-wave model

The vertical-plane-wave model is obtained by assuming barotropic balanced flow,
with streamfunction ψ(x, y, t), a uniform background buoyancy frequency N0 and a
single vertically propagating wave with vertical structure eimz and back-rotated wave
velocity φ(x, y, t). With these idealizations, appendix A derives the vertical-plane-
wave model starting from the phase-averaged equations of Wagner & Young (2016);
XV obtain the same model from their version of the phase-averaged equations. In
either case, the leading-order wave plus the leading-order balanced velocity (u, v,w),
pressure p and buoyancy b are

u+ iv = ei$ φ −ψy + iψx, (2.1)

w= im−1ei$ ∂φ + c.c., (2.2)
p=−iηei$ ∂φ + c.c.+ f0ψ, (2.3)

b=mηei$ ∂φ + c.c. (2.4)

Above, $ = mz − f0t is the phase of the vertical plane wave, η = f0λ
2 is the wave

‘dispersivity’, where λ=N0/f0 m is a horizontal scale, c.c. denotes complex conjugate
and

∂
def
=

1
2(∂x − i∂y) (2.5)

is a differential operator. The complex field φ(x, y, t) in (2.1) is the back-rotated
velocity of the near-inertial waves; in (2.2)–(2.4) the other wave fields are expressed in
terms of ∂φ. The compact representation of the wave variables in terms of φ follows
YBJ.

The balanced variables are represented by the streamfunction ψ . Because the Stokes
pressure correction is negligible for near-inertial waves (Wagner & Young 2016), the
eddies are balanced in the sense that ψ = p̄/f0, where p̄ is either the Eulerian-mean
or Lagrangian-mean pressure. Moreover, the velocities obtained from ψ in (2.1) are
Lagrangian-mean velocities, e.g. the velocity (−ψy, ψx) advects the material invariant
potential vorticity in (2.7) below. We have lightened the notation by using ψ , rather
than ψL; the implicit L is particularly important in § 6.
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Stimulated generation 421

The PV of the balanced flow is expressed in terms of ψ and φ by

q= 1ψ︸︷︷︸
def
= ζ

+
1
f0

[
1
4
1|φ|2 +

i
2

J(φ?, φ)
]

︸ ︷︷ ︸
def
=qw

, (2.6)

where 1
def
= ∂2

x + ∂
2
y is the horizontal Laplacian and J( f , g)

def
= fxgy− fygx is the Jacobian,

and the superscript star ? denotes complex conjugation. Equation (2.6) is the ‘inversion
relation’: q and φ determine the Lagrangian-mean flow via ψ = 1−1(q − qw) where
qw defined in (2.6) is the ‘wave potential vorticity’. Once ψ is obtained by inversion,
the field equations (2.7) and (2.8) below can be time-stepped.

Using the generalized Lagrangian-mean formulation, Bühler & McIntyre (1998)
showed that the assumption of weak interaction between internal waves and balanced
flow results in wave-averaged term qw contributing to the materially conserved PV;
see also Grimshaw (1975). In (2.6) the wave-averaged feedback on the balanced flow
is expressed concisely in terms of the back-rotated velocity φ via the quadratic terms
in qw.

2.1. The evolution equations
The balanced flow evolves according to PV advection

qt + J(ψ, q)=Dq; (2.7)

the back-rotated velocity satisfies the wave equation

φt + J(ψ, φ)+ φ
i
2
ζ −

i
2
η1φ =Dφ. (2.8)

Dq and Dφ in (2.7) and (2.8) are dissipative terms described below.
The wave equation (2.8) is the YBJ model in the case where the near-inertial wave

has eimz structure. The back-rotated wave velocity, φ, evolves through dispersion –
the last term on the left of (2.8) – and nonlinear advection and refraction by the
second and third terms in (2.8). Without advection, (2.8) is analogous to Schrödinger’s
equation (e.g. Landau & Lifshitz 2013, p. 51). The relative vorticity, ζ =1ψ , is the
potential, with negative ζ a well, and the ‘dispersivity’, f0λ

2, is Planck’s constant
(Balmforth, Llewellyn Smith & Young 1998; Balmforth & Young 1999; Danioux,
Vanneste & Bühler 2015). The quantum analogy may be useful for some readers, but
it is not necessary for the understanding of the results below.

The terms on the right of (2.7) and (2.8), Dq and Dφ , represent small-scale
dissipation. Small-scale dissipation is necessary to absorb the forward transfers of
potential enstrophy and wave kinetic and potential energies in the numerical solutions
reported below. We find that biharmonic diffusion and viscosity,

Dq =−κe1
2q and Dφ =−νφ1

2φ, (2.9a,b)

are sufficient to extend the spectral resolution compared to Laplacian dissipation.
In practice, we choose κe and νφ so that the highest 35 % of the modes lie in the
dissipation range and aliased wavenumbers are strongly damped.
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2.2. The small-amplitude limit and the validity of the NIW-QG approximation
The development of the NIW-QG model is ordered first by assuming that the waves
are weak in the sense that

ε
def
=

Uw

f0L
� 1. (2.10)

Above, L is a characteristic scale of both waves and balanced flow and Uw is a
characteristic near-inertial wave velocity. The other small parameter in the expansion
is the Rossby number of the balanced flow,

Ro
def
=

Ue

f0L
� 1, (2.11)

where Ue is the eddy velocity. The inequalities in (2.10) and (2.11) must be satisfied
in order to obtain the NIW-QG system. But XV and Wagner & Young (2016) make a
third assumption: Ro= ε2, or equivalently that Ue = εUw. The resulting distinguished
limit,

ε→ 0, with Ro= ε2, (2.12)

promotes the importance of wave-averaged effects so that qw appears at an early, and
accessible, order in the expansion. Thus (2.12) is for convenience rather than necessity.

The asymptotic ordering in (2.12) does not imply that the NIW-QG system fails
for weaker waves, i.e. if Uw is comparable to, or even smaller than, Ue. Making
Uw weaker than Ue delays wave-averaged effects to longer times – it does not,
per se, invalidate the expansion. The main problem with the weak-wave limit
is that other physics, not considered in the NIW-QG system, will contend with
wave-averaged effects on ultra-long time scales. For example, even without waves,
order-Ro2 ageostrophic effects modify the evolution of balanced flow and produce
departures from QG (e.g. see Muraki, Snyder & Rotunno 1999).

To summarize: the main conditions for the validity of the NIW-QG system are
(2.10) and (2.11); additionally, validity of the wave equation (2.8) requires that the
wave frequency is close of f0. The weak-wave limit Uw/Ue→ 0 is valid within the
NIW-QG framework: in that limit the system reduces to the barotropic potential
vorticity equation and the YBJ equation for a passive wave field.

The standard QG approximation is used successfully even when Ro ∼ 1 (Hoskins
1975) and we expect the NIW-QG model to enjoy similar success if � is replaced by
< in (2.11). Flows with Ro> 1 eddies, such as those reported in Barkan et al. (2016),
evolve on time scales close to f−1

0 , and an Eulerian decomposition into near-inertial
waves and eddies is ill-defined unless there is spatial scale separation between eddies
and waves. These large Rossby number flows are outside the purview of the NIW-QG
model (XV; Wagner & Young 2016).

2.3. An illustrative solution: the Lamb–Chaplygin dipole
As a preamble to our discussion of stimulated generation in freely evolving
two-dimensional turbulence, we consider an example in which the initial QG flow
is the Lamb–Chaplygin dipole; see figure 1. This dipole is an exact solution of the
Euler equations on an infinite two-dimensional plane where the vorticity is confined

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

IT
 L

ib
ra

ri
es

, o
n 

11
 Ju

n 
20

18
 a

t 1
8:

12
:1

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

30
8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.308


Stimulated generation 423
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Wave kinetic energy density Wave buoyancy

(a) (b) (c)

(d ) (e) ( f )

FIGURE 1. (Colour online) Snapshots of the Lamb–Chaplygin dipole solution with
parameters presented in table 2. Contours depict potential vorticity, q/(Ueke) =
[−1.5,−0.5, 0.5, 1.5], with dashed lines showing negative values. (a–c) The wave action
density |φ|2/2f0. (d–f ) The wave buoyancy; the buoyancy scale is B= kemUwf0λ

2. These
plots only show the central (1/5)2 of the simulation domain.

to a circle of radius R (Meleshko & Van Heijst 1994). The relative vorticity, steady
in a frame moving at uniform zonal velocity Ue, is

ζ =
2Ueκ

J0(κR)

{
J1(κr) sin θ, if r 6 R,
0, if r > R.

(2.13)

Above r2
= (x− xc)

2
+ (y− yc)

2 is the radial distance from the centre (xc, yc), tan θ =
(y − yc)/(x − xc) and Jn is the nth-order Bessel function. The matching condition at
r = R is that J1(κR) = 0 and the smallest solution is κR ≈ 3.8317. If there is no
coupling to the wave φ, then the dipole (2.13) is a solution of the QG equation (2.7).

We strongly perturb the dipole in (2.13) by seeding a wave with initial velocity:

φ(x, y, t= 0)=
1+ i
√

2
Uw. (2.14)

If there was no dipole, this initial condition produces a spatially uniform near-inertial
oscillation with speed Uw. Further parameters of this solution are summarized in
table 2; note Uw = 10Ue.
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424 C. B. Rocha, G. L. Wagner and W. R. Young

Parameter Description Value

R= 2πk−1
e dipole radius Ld/15≈ 84 km

Ue dipole strength 5× 10−2 m s−1

Uw NIW speed 5× 10−1 m s−1

N0 buoyancy frequency 5× 10−3 s−1

f0 Coriolis frequency 10−4 s−1

2πm−1 NIW vertical wavelength 325 m
κe PV biharmonic diffusivity 5× 107 m4 s−1

νw NIW biharmonic viscosity 1× 107 m4 s−1

N number of modes 512
L domain size 2π× 200 km

TABLE 2. Description of parameters of Lamb–Chaplygin simulation. The initial conditions
are Rossby number Ro = Ueke/f0 ≈ 0.05, wave dispersivity } = f0λ

2ke/Ue ≈ 1 and wave
amplitude α = Ro(Uw/Ue)2 ≈ 3.75.

We integrate the vertical-plane-wave model using a standard collocation Fourier
spectral method. We evaluate the quadratic nonlinearities, including in the wave
potential vorticity (2.6), in physical space, and transform the product into Fourier
space. We time march the spectral equations using an exponential time differencing
method with a fourth-order Runge–Kutta scheme – for details, see Cox & Matthews
(2002) and Kassam & Trefethen (2005).

With the initial condition in (2.14), qw in (2.6) and ∇φ are both zero at t= 0. The
refractive term in the wave equation (2.8), however, immediately imprints itself onto
φ thus creating non-zero ∇φ and non-zero qw. Once refraction has created gradients
in φ, the advective term in (2.8) can further distort φ and increase ∇φ. This scale
reduction of φ is most evident in the wave buoyancy shown in figure 1(d–f ). Figure 1
also shows the well-known focusing of waves into the negative vortex. But the wave
feedback on the mean flow through qw then results in distortion and shearing of the
dipole so that the negative vortex loses its integrity; the lopsided dipole then starts
to drift. Once the negative vortex is distorted to small scales it no longer acts as
an effective potential well: the trapping of wave energy by the deformed anti-cyclone
is weaker than in the initial condition. In fact, figure 1, which shows the materially
conserved PV q, understates the development of small scales in the relative vorticity ζ :
figure 2 shows that both ζ and qw develop small scales with significant cancellation
resulting in the relatively smooth field q = ζ + qw shown in figure 1. Thus at the
final time in figure 1 the waves are no longer strongly trapped in the region with
ζ < 0. This phenomenology, including significant cancellation between ζ and qw, is
also characteristic of wave-modified two-dimensional turbulence in § 4.

To understand the results in figure 1 and quantify the stimulated generation of wave
energy, we need to understand the conservation laws of the vertical-plane-wave model.

3. Conservation laws of the vertical-plane-wave model
XV noted that the vertical-plane-wave model in (2.6) through (2.8) inherits two

quadratic conservation laws from the parent NIW-QG model: if there is no dissipation,
then wave action,

A def
=
|φ|2

2f0
, (3.1)
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1–1–2 0 1–1–2 0

0

1

2(a) (b)

FIGURE 2. (Colour online) (a) Snapshot of q (contours) and ζ (colours) at t×Ueke= 20.
(b) Snapshot of q (contours) and wave PV qw (colours). Both black lines and colours
depict the contour levels [−1.5,−0.5, 0.5, 1.5] × (Ueke). Solid lines and reddish colours
depict positive values; dashed lines and greenish colours show negative values.

and the energy,

E def
=

1
2 |∇ψ |

2
+

1
4λ

2
|∇φ|2, (3.2)

are both separately conserved. Following Bretherton & Garrett (1968), the action in
(3.1) is the wave energy divided by the intrinsic frequency; YBJ observed that to
leading order the wave energy is only kinetic and the intrinsic frequency in (3.1) is
the inertial frequency f0.

The conserved energy density E in (3.2) is the sum of the kinetic energy of the
balanced flow,

K def
=

1
2 |∇ψ |

2, (3.3)

and the potential energy of the near-inertial waves,

P def
=

1
2 b2/N2

0 =
1
4λ

2
|∇φ|2. (3.4)

Above, b∝ ∂φ is the wave buoyancy defined in (2.4). We emphasize again that ψ is
the streamfunction of the Lagrangian-mean flow, which is in geostrophic balance; the
Eulerian-mean flow is not in balance. Thus we refer to K as the kinetic energy of the
balanced flow.

XV explain the physical basis of stimulated generation by noting that balanced
kinetic energy K can be converted into wave potential energy P while conserving the
integral of the total energy E in (3.2). Indeed, this conversion must occur if ∇φ is
increased by a combination of refraction and advection in the wave equation (2.8). In
the example shown in figure 1, the initial wave field in (2.14) has infinite spatial scale
and therefore there is no wave potential energy at t= 0. The subsequent evolution in
figure 1 involves creation of non-zero ∇φ, corresponding to gain of P at the expense
of K: this is stimulated generation of near-inertial waves.

To substantiate this intuition, and diagnose results from our simulation of wave-
modified two-dimensional turbulence, we develop the conservation laws corresponding
to (3.1) and (3.2) in more detail.
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3.1. Action conservation equation and action flux
Multiplying the wave equation (2.8) by φ? and adding to the complex conjugate, we
obtain a conservation equation for action density,

∂tA+ J(ψ,A)+∇ ·F =
1

2f0
(φ?Dφ + φDφ?)︸ ︷︷ ︸

def
=DA

, (3.5)

where the flux of near-inertial wave action is

F def
=

i
4
λ2(φ∇φ? − φ?∇φ). (3.6)

The local conservation law (3.5) shows how the wave action A changes due to
geostrophic advection and divergence of the wave flux and dissipation – the second,
third and fourth terms in (3.5).

The wave action flux F is analogous to the probability current of quantum
mechanics (e.g. Landau & Lifshitz 2013, p. 57). Using the polar representation
φ = |φ|eiΘ , the wave action flux F can also be written as

F =A η∇Θ, (3.7)

where recall that η= f0λ
2 is the dispersivity. In (3.7), η∇Θ is the ‘generalized group

velocity’ of hydrostatic near-inertial waves, i.e. F is the generalized group velocity
times the action density A. We use the term ‘generalized’ because no WKB-type
(Wentzel–Kramers–Brillouin) scale separation is required to obtain the results above.
The connection to standard internal-wave group velocity is quickly verified by
considering a plane near-inertial wave with Θ = kx+ ly, yielding η∇Θ =N2

0(k, l)/f0m2.
Another useful identity involving the action flux F is

∇ · (k̂×F)=
i
2
λ2J(φ?, φ), (3.8)

where k̂ is the unit vector perpendicular to the (x, y)-plane. Using (3.8), and the
definition of action in (3.1), the wave PV qw in (2.6) can be written as

qw
=

1
21A+ η

−1
∇ · (k̂×F). (3.9)

Denoting an average over the domain by 〈〉, and assuming that the action flux
divergence ∇ ·F vanishes after integration, we obtain from (3.5)

d〈A〉
dt
= εA, (3.10)

where εA
def
= 〈φ?Dφ + φDφ?〉/(2f0) is the domain average of the dissipative term on the

right of (3.5). In the example shown in figure 1 the total action 〈A〉 is conserved to
within 1 % over the course of the integration.
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3.2. Ehrenfest’s theorem
The quantum analogy suggests that we should seek an analogue of Ehrenfest’s
theorem (the quantum equivalent of Newton’s law that force equals mass times
acceleration). Thus in appendix B we develop a local conservation law for F . The
domain average of that result is

d〈F〉
dt
= k̂× 〈ζ F〉 − k̂× 〈(F · ∇)∇ψ〉 − η

〈
A∇

1
2
ζ

〉
+ εF . (3.11)

In the quantum analogy, F is momentum and the left-hand side of (3.11) is mass
times acceleration; the forces are on the right of (3.11). Starting from the end, εF
is a dissipative term defined in appendix B. The third term on the right of (3.11) is
the force due to the gradient of the potential ζ/2. The second term on the right of
(3.11) represents the combined effect of stretching and tilting of F by the geostrophic
flow. The first term on the right of (3.11) is a ‘vortex force’, again due to ζ , but
perpendicular to F . The two k̂× terms on the right lack quantum analogues.

The results in this section are obtained from the wave equation (2.8) without
using the PV equation (2.7). In other words, (3.5)–(3.11) apply to the YBJ equation
with eimz structure regardless of the balanced flow dynamics. We turn now to energy
conservation and consideration of the PV equation (2.7).

3.3. Energy conservation and conversion
The energy conservation law is considerably more complicated than action conserva-
tion. We sequester the details of the local conservation laws to appendix B and present
here the simpler results obtained by domain averaging those local conservation laws.
The results in (3.12) through (3.16) below are obtained by: (i) multiplying the wave
equation (2.8) by 1φ?, forming the average 〈〉 and adding the complex conjugate; and
by (ii) multiplying the PV equation (2.7) by −ψ and averaging 〈〉.

For the wave potential energy in (3.4) and the balanced kinetic energy in (3.3) we
find

d〈P〉
dt
= Γr + Γa + εP , (3.12)

d〈K〉
dt
=−Γr − Γa +Ξ + εK, (3.13)

where the ‘conversion terms’ in (3.12) and (3.13) are

Γr
def
=
〈

1
2ζ ∇ ·F

〉
, (3.14)

and

Γa
def
=
λ2

4
〈1φ?J(ψ, φ)+1φJ(ψ, φ?)〉 (3.15)

= −
λ2

2

〈[
φ?x φ?y

]  −ψxy
1
2
(ψxx −ψyy)

1
2
(ψxx −ψyy) ψxy

 [φx
φy

]〉
. (3.16)

The dissipative terms, εP , εK and Ξ are defined in appendix B. Ξ in (3.13) is
particularly interesting: dissipation of waves Dφ produces balanced kinetic energy.
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FIGURE 3. (Colour online) Illustration of energy conversion terms in the Lamb–Chaplygin
dipole solution with parameters presented in table 2. (a) The action flux F overlaid
on contours of relative vorticity 1ψ/(Ueke) = [−1.5, −0.5, 0.5, 1.5], with dashed lines
showing negative values; the scale of the action flux is F = f0λ

2keU2
w. (b) The local

advective conversion (i.e. the non-averaged Γa) overlaid on contours of streamfunction
ψ × (Ue/ke)= [−8,−4,−2, 0, 2, 4, 8].

Summing (3.12) and (3.13) the ‘conversion’ terms Γr and Γa cancel, and we obtain
the conservation law for total energy 〈E〉 = 〈P +K〉.

The refractive conversion Γr stems from iφζ/2 in the wave equation and is easy to
interpret: the convergence of the wave action flux, ∇ ·F < 0, into anti-cyclones, ζ < 0,
is a source of wave potential energy P ; similarly, the divergence of the wave action
flux from cyclones is a source of P . Figure 3(a) shows the convergence of F into the
anti-cyclone (and divergence from the cyclone) of the dipole solution at t×Ueke = 1,
which yields the sharp initial increase of 〈P〉 discussed below. Ehrenfest’s theorem in
(3.11) illuminates the initial structure of F in figure 3. Because φ is initially uniform,
the initial tendency of F is

∂tF(0)=−ηA∇ 1
2ζ . (3.17)

Thus the action flux is initially anti-parallel to the gradient of relative vorticity (see
figure 3a), and wave action converges into anti-cyclones (and diverges from cyclones).

The advective conversion Γa in (3.12) and (3.13) stems from the term J(ψ, φ) in
the wave equation (2.8) and is a source of 〈P〉 due to straining and deformation
of the wave field by the geostrophic flow. The symmetric 2 × 2 matrix in (3.16)
is the strain or deformation tensor of the geostrophic flow. Thus, in analogy with
passive-scalar gradient amplification, straining also enhances gradients of the back-
rotated near-inertial velocity φ, thereby generating wave potential energy 〈P〉.

3.4. Energetics of the Lamb–Chaplygin dipole solution
Figure 4 shows the energetics of the Lamb–Chaplygin dipole solution in figure 1. In
figure 4(a), P increases at the expense of K, while A is conserved. The wave potential
energy budget in figure 4(b) shows that this stimulated generation occurs in two stages.
First, refraction of the initially uniform wave field causes a dramatic concentration of
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FIGURE 4. (Colour online) Diagnostics of the Lamb–Chaplygin dipole solution with
parameters presented in table 2. (a) Energy change about initial condition. (b) Wave
potential energy budget (3.12).

Ṗ budget Fractional size (
∫
Ṗ dt/1P) K̇ budget Fractional size (

∫
K̇ dt/1K)

Γr 0.228 −Γr −0.227
Γa 0.778 −Γa −0.774
— — Ξr 0.004
— — Ξa 0.0
χφ −0.006 εψ −0.003
Res. 0.0 Res. 0.0

TABLE 3. The time-integrated budget of wave potential energy and quasi-geostrophic
kinetic energy of the Lamb–Chaplygin dipole solutions with parameters provided in table 2.
The energy budgets close within 10−6 %.

waves into the anti-cyclone, producing a sharp increase P through Γr. But this rapid
initial energy conversion does not last long because the wave feedback deforms the
anti-cyclone and dispersion radiates waves away from the dipole (see figure 1). Thus
in figure 4(b), Γr decreases sharply, and eventually reverses sign at t×Ueke ≈ 8.

The second stage of stimulated generation starts after refraction has created
dipole-scale waves. Advection by the balanced flow can then strain the waves,
further reducing their lateral scale (figure 4b). The ensuing advective conversion, Γa,
starts at t×Ueke≈ 4. Straining by the balanced flow sustains this advective generation
of P . The waves eventually escape the straining regions through dispersion and the
conversion nearly halts at t × Ueke = 30. The time-integrated Γa accounts for ≈78 %
of the wave potential energy generation; table 3 summarizes the energy budget.

3.5. Summary
The expressions for energy conversion in (3.14) and (3.16) clarify the mechanism of
stimulated generation triggered by the initially uniform near-inertial wave in (2.14).
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First, refraction causes a convergence of wave action into anti-cyclones. Then
advection strains the waves, reducing their lateral scale. Both processes amplify
the lateral gradients of wave amplitude, thereby generating wave potential energy P
at the expense of balanced kinetic energy K. Wave action A is conserved throughout
this process.

In the remainder of this paper, we describe and quantify stimulated generation in an
idealization of an oceanographic post-storm scenario: the uniform initial near-inertial
wave in (2.14) interacts with two-dimensional turbulence.

4. Two-dimensional turbulence modified by near-inertial waves
To study the energy exchange between near-inertial waves and geostrophic flow in

a turbulent regime, we consider a barotropic flow that emerges from random initial
conditions integrated for 20 eddy turnover time units. In other words, we first integrate
the initial condition

ψ(x, y, t×Ueke =−20)=
∑

k,l

ψk cos(kx+ ly+ χk) (4.1)

with waveless QG dynamics before introducing the wave in (2.14) at t × Ueke = 0.
Above, χk is a random phase uniformly distributed on [0, 2π), and ψk is the
streamfunction isotropic spectrum

ψk =C× {|k| [1+ (|k|/ke)
4
]}
−1/2, (4.2)

with the wavenumber magnitude |k|2 = k2
+ l2. The prescribed initial energy U2

e/2
determines the constant C: ∑

k,l

|k|2ψk
2︸ ︷︷ ︸

def
=Ke

=
1
2 U2

e . (4.3)

The kinetic energy spectrum, Ke, peaks at the energy-containing scale k−1
e . At scales

larger than k−1
e , Ke has a linear dependence on |k|, whereas Ke decays as |k|−3 at

scales smaller than k−1
e . This red spectrum ensures insignificant loss of energy by

small-scale dissipation Dq in (2.7). Over the course of the simulations described below,
the centroid wavenumber of the balanced kinetic energy spectrum decreases by 50 %;
k−1

e is thus a reasonable scale to characterize the size of the balanced flow throughout
the evolution.

In the case with no waves, that is qw
= 0, the PV equation (2.7) reduces to

two-dimensional (2-D) fluid mechanics and the quasi-inviscid evolution of a random
initial condition is the well-studied problem of 2-D turbulence. Stirring of vorticity
1ψ transfers enstrophy towards small scales; energy flows to large scales. Most of
enstrophy is dissipated within few eddy turnover times, whereas kinetic energy is
nearly conserved. Vorticity concentrates into localized coherent structures: after 20
eddy turnover time units, the vorticity is well organized into an ensemble of vortices
that form via like-sign vortex merging (e.g. Fornberg 1977; McWilliams 1984).

4.1. Relevant parameters
The scaling

length∼ k
−1

e , time∼ (Ueke)
−1, ψ ∼Uek−1

e , and φ ∼Uw, (4.4a−d)
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Parameter Description Value

2πk−1
e energy-containing scale Ld/10≈ 125 km

Ue eddy velocity 5× 10−2 m s−1

Uw NIW speed 1× 10−1 m s−1

N0 buoyancy frequency 5× 10−3 s−1

f0 Coriolis frequency 10−4 s−1

2πm−1 NIW vertical wavelength 280–560 m
κe PV biharmonic diffusivity 5× 106 m4 s−1

νw NIW biharmonic viscosity 5× 106 m4 s−1

N number of modes 1024
L domain size 2π× 200 km

TABLE 4. Description of parameters of the 2-D turbulence simulations. The initial
conditions are Rossby number Ro=Ueke/f0≈ 0.05, wave dispersivity }= f0λ

2ke/Ue≈ 0.5–2
and wave amplitude α = Ro(Uw/Ue)

2
≈ 0.1.

shows that there are two important dimensionless control parameters. The first is

α
def
=

Ueke

f0︸︷︷︸
def
=Ro

×

(
Uw

Ue

)2

, (4.5)

which scales the contribution of the wave terms in the potential vorticity (2.6). The
second dimensionless parameter is

} def
= η×

ke

Ue
= Ro−1

× (λke)
2, (4.6)

which scales wave dispersion against the effects of advection and refraction. Assuming
that the wave horizontal scale is k−1

e , (λke)
2 is the wave Burger number, which is small

for near-inertial waves.

4.2. Solution with }= 1 and α = 0.1
Figure 5 shows snapshots of a solution with }= 1 and α= 0.1 with further parameters
in table 4. This turbulence solution shares qualitative aspects of the Lamb–Chaplygin
solution. Starting from a uniform wave field in (2.14), refraction quickly concentrates
the waves into anti-cyclones. Initially the action density A is uniform but by t ×
Ueke ≈ 1, A varies on eddy scales by a factor of two with significant focusing of
waves, indicated by maxima of A, into anti-cyclones (compare (d–f ) and (g–i) of
figure 5).

Dispersion radiates waves from the vortices; advection enhances the gradients of
back-rotated velocity φ (see figure 5g–i, which depicts wave buoyancy). By t×Ueke≈

10, A varies by a factor of five and the wave buoyancy is amplified by a factor of
two. The evolution of potential vorticity q is similar to that in the waveless problem:
like-sign vortices merge into bigger vortices. The big vortices keep straining the waves,
generating smaller scales in the wave field.

Figure 6(a) shows the inexorable increase in wave potential energy 〈P〉 and the
corresponding decrease in balanced kinetic energy 〈K〉. In figure 6(b) quick wave
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FIGURE 5. (Colour online) Snapshots of the turbulence solution with parameters in table 4.
(a–c) PV q. (d–f ) Wave kinetic energy density |φ|2. (g–i) Wave buoyancy, with scale B=
kemUwf0λ

2. These plots show (1/2)2 of the domain.

refraction results in an initial sharp generation of 〈P〉 at the expense of balanced
kinetic energy 〈K〉. As in the Lamb–Chaplygin solution, the positive refractive
conversion, Γr > 0, is ephemeral: in figure 6(b), Γr peaks at t × Ueke ≈ 2 and then
decays rapidly, eventually changing sign at t × Ueke ≈ 5. However, a significant
positive advective conversion, Γa > 0, sustains stimulated generation so that 〈P〉
ultimately increases approximately linearly with time.

After 25 eddy turnover time units, the balanced kinetic energy 〈K〉 has decayed by
approximately 14 % from its initial value. Most of this loss is by stimulated generation
of 〈P〉. As in the Lamb–Chaplygin solution, advective conversion Γa accounts for
most of the energy change. Table 5 presents further details of the energy budget.

The solution illustrates interesting characteristics of stimulated generation. First, the
role of refraction is catalytic in that it generates the initial eddy-scale gradients in φ
that are then enhanced by advective straining; the advective conversion, Γa in (3.16),
ultimately accounts for most of the energy transfer from turbulence to waves. Second,
the approximately linear-in-time growth of wave potential energy 〈P〉 is very slow in
comparison with exponential increase of passive-scalar tracer gradients in turbulent
velocity fields. The relatively slow growth of 〈P〉 suggests that wave dispersion plays
an important role in slowing and perhaps opposing advective straining (see § 5 for
further discussion of dispersion and ‘wave escape’). To investigate whether these
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FIGURE 6. (Colour online) Diagnostics of the 2-D turbulence solution with parameters
presented in table 4. (a) Energy change about initial condition. (b) Wave potential energy
budget (3.12).

Ṗ budget Fractional size (
∫
Ṗ dt/1P) K̇ budget Fractional size (

∫
K̇ dt/1P)

Γr 0.117 −Γr −0.108
Γa 0.907 −Γa −0.839
— — Ξr 0.009
— — Ξa 0.003
χφ −0.026 εψ −0.062
Res. 0.003 Res. 0.003

TABLE 5. The time-integrated budget of wave potential energy and QG kinetic energy
of the reference 2-D turbulence solution with parameters in 4. The energy budgets close
within 0.1 %.

characteristics are general we consider solutions with varying vertical wavelengths
and therefore different dispersivities.

4.3. Varying dispersivity
Figure 7 shows snapshots of potential vorticity q and its constituents in a set of
solutions with varying the vertical wavelength 2π m−1 from 280 m to 560 m, yielding
dispersivities ranging from 0.5 to 2. (All other parameters are fixed.) The potential
vorticity q shows more small-scale filamentation with decreasing dispersivity, but it
is otherwise similar across the three solutions. The partition into relative vorticity
1ψ and wave potential vorticity qw, however, depends significantly on dispersivity.
In particular, qw develops smaller scales and larger amplitudes with decreasing
dispersivity. As anticipated by the dipole example in figure 2, there is cancellation of
small-scale features in qw against those in ζ so that q is relatively smooth even in
the solution with weak dispersion }= 0.5.

The initial evolution of the uniform wave field is similar across dispersivities,
with refraction initially generating eddy-scale gradients of the waves; see figure 8.
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FIGURE 7. (Colour online) Snapshots of PV q and its decomposition into relative vorticity
ζ =1ψ , and wave potential vorticity qw. The snapshots were taken at t×Ueke = 25.

Refraction produces a sharp initial increase of wave potential energy and decrease
of balanced kinetic energy, which is almost independent of dispersivity. Figure 8(c)
shows that this initial ‘refractive stage’ yields a strongly negative wave–vorticity
correlation r,

r
def
=

〈ζA′〉√
〈ζ 2〉〈A′2〉

, (4.7)

where A′ def
= (|φ|2− |〈φ〉|2)/f0; in figure 8(c) the early negative r is nearly independent

of dispersivity. Because significant energy exchange takes place in the anti-cyclones
due to the initial wave concentration, a positive vorticity skewness ensues (figure 8d).
Once the eddy scales are created, advection strains the waves and generates further
wave potential energy at the expense of balanced kinetic energy. It is in this stage
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FIGURE 8. (Colour online) The energetics of 2-D turbulence solutions with different
dispersivities. (a) Energy change about the initial condition. (b) The energy conversion
terms in (3.12). (c) The correlation between relative vorticity and wave kinetic energy.
(d) The skewness of relative vorticity.

that the dependence on dispersivity is pronounced: weakly dispersive waves are
strained further than strongly dispersive waves. Thus the advective conversion
becomes stronger with decreasing dispersivity (figure 8b). Advection and dispersion
significantly reduce the wave–vorticity correlation; the reduction in correlation
increases as the dispersivity decreases (figure 8c). For the weakest dispersivity
considered, the wave–vorticity correlation becomes weakly positive, likely because of
the early positive vorticity skewness.

In all solutions reported above, the evolution of the balanced flow is similar to
that of waveless 2-D turbulence: there is a transfer of balanced energy towards larger
scales driven by merger of like-signed vortices; see figure 9(a). The main difference is
that balanced kinetic energy is constantly transformed into wave potential energy via
stimulated generation. The stimulated generation process is associated with a forward
transfer of wave action A from the infinite horizontal scale in the initial condition
(2.14) to the eddy scale; see figure 9(b). The wave potential energy density P in
figure 9(c) develops significantly smaller scales than those of the balanced kinetic
energy K.
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FIGURE 9. (Colour online) Energy-preserving spectra of 2-D turbulence solutions with
different dispersivities. The three panels show spectra of balanced kinetic energy K, wave
action A and wave potential energy P . All solid lines correspond to spectra at t × Ueke
= 25 and the dashed line in K is the balanced kinetic energy spectrum at t × Ueke = 0.
All spectra are normalized by their total energy, i.e. the area under each curve is one.

5. Wave escape

The expression for the energy conversion in (3.12) illuminates the physics of
stimulated generation: both convergence of wave action density into anti-cyclones
(3.14) and geostrophic straining of the wave field (3.16) are sources of wave potential
energy and sinks of balanced kinetic energy. But this characterization of stimulated
generation ignores the important role of wave dispersion – waves can propagate out
of the vorticity or straining regions, thereby reducing the correlations Γr and Γa

required for stimulated generation.
Wave dispersion is the only mechanism that upsets stimulated generation in the

quasi-inviscid solutions described in this paper. In all solutions, after an initial
conversion due to refraction, advective straining accounts for most of the energy
conversion. Experience with the passive-scalar problem suggests (incorrectly) that
the wave potential energy P should then increase exponentially with time as ∇φ is
amplified by stirring (e.g. Young, Rhines & Garrett 1982). But even in the weakly
dispersive limit, the waves do not behave as a passive scalar and stimulated generation
is much less effective than suggested by this ‘passive-scalar thinking’. This is because
advective straining can only increase ∇φ so much: the near-inertial generalized group
velocity is η∇Θ (cf. § 3), where Θ is the phase of the near-inertial back-rotated
velocity φ = |φ|eiΘ . Geostrophic straining enhances ∇Θ thereby increasing the
near-inertial group velocity so that the waves escape the straining region. Thus,
straining by a barotropic balanced flow results in near-inertial ‘wave escape’, as
opposed to the ‘wave capture’ described by Bühler & McIntyre (2005). Indeed, wave
capture requires both lateral strain and vertical shear: the vertical-plane-wave model
has no vertical shear and therefore wave capture is inoperative; see Thomas (2012)
for further discussion of the importance of vertical shear to wave capture.
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5.1. Strain flow
We are surprised by the successful resistance mounted by the waves to strain-driven
exponential amplification of ∇φ and thus seek to illustrate wave escape with simple
flows. We first consider the straining flow ψ = −αxy. Ignoring dissipation for
simplicity, the wave equation (2.8) reduces to

φt + αxφx − αyφy −
i
2
η1φ = 0, (5.1)

and the action equation is

At + α(xA)x − α(yA)y +∇ ·F = 0. (5.2)

Without vorticity and dissipation, Ehrenfest’s theorem (3.11) reduces to

∂t[〈F x
〉, 〈F y

〉] = [−α〈F x
〉, +α〈F y

〉], (5.3)

with solution

[〈F x
〉, 〈F y

〉] = [〈F x
〉0e−αt, 〈F y

〉0eαt
], (5.4)

where the subscript 0 denotes the initial condition. For a compact wave packet, with
a well-defined uniform group velocity cg, the action flux is

〈F〉 = cg〈A〉. (5.5)

Because 〈A〉 is constant, (5.4) is thus also a solution for cg(t).
The position of the centre of the packet is

xc(t)
def
= 〈xA〉/〈A〉. (5.6)

Multiplying (5.2) by x, averaging and using (5.4), yields

∂txc − αxc = cx
g0e−αt, and ∂tyc + αyc = cy

g0eαt, (5.7a,b)

with solution

xc(t)= xc0 + cg0
sinh αt
α

. (5.8)

The trajectory of the packet is therefore a straight line following the initial group
velocity cg0. The wave packet is not deflected by the hyperbolic streamlines of the
straining flow and the packet escapes by accelerating exponentially with time along a
straight-line trajectory. This requires that the group velocity cg(t) adjusts in magnitude
and direction so as to keep the centre of the packet on the straight and narrow.

The result in (5.8) is so remarkable that it is reassuring to obtain it without invoking
Ehrenfest’s theorem. We thus consider the specific example of a wave packet launched
in the strain field with the Gaussian initial condition

φ(x, y, 0)=
2π

µν
exp

[
−

1
2

(
x2

µ2
+

y2

ν2

)
+ i(px+ qy)

]
. (5.9)
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FIGURE 10. (Colour online) The escape of a Gaussian near-inertial wave packet from
the saddle of a strain flow. The Gaussian decay scale is µ = ν. The waves are weakly
dispersive: } = η/αµ2

≈ 0.1. Black contours show the streamfunction ψ = −αxy, and
colours represent wave zonal velocity; the colour bar limits are fixed. The black dot
indicates the centre of the packet and the grey line tracks its trail.

If pµ� 1 and qν� 1 this is a wave packet with initial wavenumber (p, q) and initial
group velocity

cg0 = η (p, q). (5.10)

The exact solution to (5.1), subject to the initial condition (5.9), is

φ =
2π√

(µ2 + iηf )(ν2 + iηg)

× exp
[
−

1
2

x2e−2αt
− 2iµ2pxe−αt

+ iηfµ2p2

µ2 + iηf
−

1
2

y2e2αt
− 2iν2qyeαt

+ iηgν2q2

ν2 + iηg

]
,

(5.11)

with

f
def
=

1− e−2αt

2α
and g

def
=

e2αt
− 1

2α
. (5.12a,b)

Figure 10 illustrates the solution (5.11). The strain flow tilts the packet to align it with
the x-axis. The flow then exponentially stretches the packet, which in turn escapes
from the saddle point. To calculate the trajectory of the packet we note that

|φ|2 =
(2π)2√

(µ4 + η2f 2)(ν4 + η2g2)
exp

[
−
µ2(xe−αt

− ηfp)2

µ4 + η2f 2
−
ν2(yeαt

− ηgq)2

ν4 + η2g2

]
,

(5.13)

and we recover xc(t) in (5.8) as the centre of the packet in (5.13).

5.2. A flow with strain and vorticity
As a second example of wave escape, figure 11 shows a numerical solution for
a wave packet launched at the saddle point of a large-scale balanced flow with
ψ = sin x+ sin y. The small-time evolution of the packet is predicted by the strain–flow
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FIGURE 11. (Colour online) A comparison of passive-scalar and wave solutions (} ≈
0.09) with same initial conditions (the wave kinetic energy is equal to the passive-scalar
variance) and the same small-scale dissipation. (a) Initial condition of wave back-rotated
zonal velocity and of the passive scalar. (b) Wave back-rotated zonal velocity at t×Ueke
= 10. (c) Passive-scalar concentration at t × Ueke = 10. (d) Variance of wave velocity or
passive-scalar variance. (e) Variance of wave velocity gradient or passive scalar. In (d) and
(e), the diagnostics are normalized by their initial values.

solution discussed above. Figure 11(a–c) shows that the behaviour of the wave packet
is qualitatively different from that of a passive scalar in the same flow: the passive
scalar is stretched out along the separatrices while the wave packet escapes into
the vortex centres. Thus the passive-scalar packet is strained and quickly diffused
into oblivion. On the other hand, the waves are strained just so much, resulting in
acceleration and escape from the straining region; the waves finally concentrate in the
regions with non-zero vorticity, i.e. in the regions where the Okubo–Weiss criterion
indicates no exponential stretching.

On the bottom row, figure 11(d) shows that while wave action ∝|φ|2 is nearly
conserved, the analogous passive-scalar variance is strongly dissipated. Figure 11(e)
shows that the variance of the passive-scalar gradient at first increases exponentially
due to straining and then decays due to diffusion. On the other hand, the potential
energy of the waves ∝|∇φ|2 increases slowly and then oscillates around an
equilibrium level. The wave-escape phenomenology in the turbulence solutions of
§ 4 qualitatively resembles that seen in this simple flow. In particular, the wave
potential energy does not reach the dissipative scale (figure 9c).

6. The Eulerian-mean viewpoint
In § 3 we developed conservation laws for A, P and K based on the Lagrangian-

mean streamfunction ψ and the back-rotated velocity φ. Material conservation
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FIGURE 12. (Colour online) Snapshot of the dipole Lagrangian-mean streamfunction and
its decomposition into Eulerian-mean streamfunction and Stokes drift. The snapshot is at
t×Ueke = 10, just after the end of the refractive stage. The spatial average of each field
was removed for direct comparison.

of PV is central to the NIW-QG system and thus the Lagrangian-mean velocity,
(−ψy, ψx), must be a key field. But then K = |∇ψ |2/2 is not the kinetic energy of
the Eulerian-mean velocity and therefore Reynolds stress diagnostics do not directly
indicate changes in K. In fact Reynolds stresses have not been mentioned in § 3 and
one might wonder how these standard statistics are related to the NIW-QG energy
conversions Γr and Γa. In this section we identify the Eulerian-mean energy transfers
in terms of NIW-QG fields.

6.1. Kinetic energy of the Lagrangian-mean and Eulerian-mean flows
Appendix A.2 shows that in the vertical-plane-wave model, the Stokes drift is
horizontally non-divergent, with streamfunction −A. Thus the Stokes velocity is

uS
=−k̂×∇A, (6.1)

and the Eulerian-mean streamfunction is

ψE def
= ψ +A. (6.2)

To illustrate the important differences between Lagrangian-mean and Eulerian-mean
viewpoints, figure 12 shows a snapshot of the dipole example from § 2.3. This
snapshot was taken at t × Ueke = 10, just after the end of the refractive stage of
energy conversion, when waves are strongly concentrated in the anti-cyclone. While
ψ is fairly symmetric, the Eulerian-mean streamfunction ψE displays a stronger
anti-cyclone. The Stokes drift is concentrated in the negative ζ region and is
anti-parallel to the Eulerian-mean flow. Thus the asymmetry in ψE is compensated
by a strong ‘Stokes cyclone’, which is set up during the refractive stage and thus the
Lagrangian-mean streamfunction ψ is more nearly a symmetric dipole.

Using the decomposition (6.2), the balanced kinetic energy K= |∇ψ |2/2 is

K= 1
2 |∇ψ

E
|
2︸ ︷︷ ︸

def
=KE

+
1
2 |∇A|

2
−∇ψE

· ∇A︸ ︷︷ ︸
def
=KS

. (6.3)
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K does not diagonalize, i.e. the cross-term ∇ψE · ∇A is non-zero, and the ‘Stokes
kinetic energy’ KS is not sign definite.

The first goal here is to obtain an expressions for the time rate of change of KS

and KE. We begin with yet another A-F identity: using the definitions of A and F
in (3.1) and (3.6) yields

A∇ · (k̂×F)=−F · k̂×∇A. (6.4)

The average of (6.4), combined with a standard vector identities, results in

〈A∇ · (k̂×F)〉 = 〈F · k̂×∇A〉 = 0. (6.5)

Equation (6.5) implies that the Stokes velocity uS is, on average, orthogonal to the
action flux F .

Forming 〈Aq〉, and combining the expression for qw in (3.9) with the identity (6.5),
yields

〈KS
〉 = 〈Aq〉. (6.6)

An expression for the rate of change of 〈KS
〉 follows by combining the PV advection

equation (2.7) with the action conservation (3.5):

d〈KS
〉

dt
=−ΓS + 〈ADq〉 + 〈qDA〉︸ ︷︷ ︸

def
= εS

, (6.7)

where

ΓS
def
= 〈q∇ ·F〉. (6.8)

Finally we obtain the rate of change of the Eulerian-mean kinetic energy by
combining (6.7) with (3.13):

d〈KE
〉

dt
= ΓS − Γr − Γa +Ξ + εK − εS. (6.9)

6.2. Reynolds stresses and buoyancy fluxes
Within the Eulerian framework the horizontal velocity is represented as

u= uE
+ ũ, (6.10)

where superscript E denotes the Eulerian-mean and tilde denotes the near-inertial wave
velocity. With this decomposition, the Eulerian-mean velocity satisfies

uE
t + uE

· ∇uE
+ (ũ · ∇ũ)E + k̂× f0uE

+∇pE
= 0. (6.11)

(Dissipation is neglected in the following discussion.) As in the vertical plane-
wave model, we confine attention to mean velocities independent of z, so that
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uE
= (−ψE

y , ψ
E
x ) where ψE is the Eulerian-mean streamfunction introduced in (6.2).

Forming 〈uE· (6.11)〉 yields

d〈KE
〉

dt
= 〈(ṽ2

− ũ2)E ψE
xy + (ũṽ)

E (ψE
xx −ψ

E
yy)〉︸ ︷︷ ︸

def
=RSP

. (6.12)

Above RSP is the Reynolds shear production of Eulerian-mean kinetic energy.
Comparing (6.12) with (6.9), and ignoring the dissipative contributions, we see
that

RSP= ΓS − Γr − Γa. (6.13)

We can also consider the source of near-inertial potential energy by starting with
the wave buoyancy equation

b̃t + uE
· ∇b̃+∇ · [ũb̃− (ũb̃)E] + w̃N2

= 0, (6.14)

where we have confined attention to the vertical-plane-wave model so that bE
= 0.

Multiplying (6.14) by b̃, taking the Eulerian average and then the domain average 〈〉,
we have

d〈P〉
dt
= − 〈(w̃b̃)E〉︸ ︷︷ ︸

def
=BF

, (6.15)

= Γr + Γa. (6.16)

Above P = (b̃2)E/2N2 is the wave potential energy and BF is the buoyancy flux; we
have used (3.12) to relate Γr and Γa to the Eulerian-mean buoyancy flux.

Finally, from balanced energy equation (3.13) and K=KE
+KS, we deduce that

d〈KS
〉

dt
= BF− RSP, (6.17)

= −ΓS. (6.18)

Figure 13(a) shows the decomposition of 〈K〉 into 〈KE
〉 and 〈KS

〉 for the main 2-D
turbulence solution discussed in § 4. In the initial condition there is no Stokes flow
and K = KE. Then in the refractive stage, the kinetic energy of the Eulerian-mean
flow 〈KE

〉 increases, while kinetic energy of the Lagrangian-mean flow 〈K〉 decreases;
the ‘Stokes energy’, KS

= K − KE, is initially zero and becomes negative, due to a
positive ψE-A correlation (cf. figure 12). As illustrated in figure 12, the refractive
stage, which creates the strong spatial modulations in action density A, can also be
viewed as setting up the Stokes velocity in (6.1).

In the refractive stage, the advective conversion Γa is small and ΓS ≈ 2Γr. Hence
the shear production is due to the refractive conversion, RSP≈Γr (see figure 13b). At
later times, during the advective stage, ΓS − Γr is small, and therefore RSP ≈ BF ≈
−Γa. At this stage, ∂t〈K〉≈ ∂t〈KE

〉, and the connection between the Eulerian-mean and
Lagrangian-mean viewpoints is straightforward: the kinetic energy extracted from the
Eulerian-mean flow via Reynolds shear production approximately matches the creation
of wave potential energy through buoyancy fluxes. In general, however, the connection
is convoluted, involving the rate of change of the ‘Stokes energy’ in (6.17).
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FIGURE 13. (Colour online) Diagnostics of the 2-D turbulence solution with parameters
presented in table 4. (a) Kinetic energy change about initial condition. (b) Refractive and
advective conversion terms, and shear production.

7. Discussion and conclusions
7.1. Absence of a direct cascade of wave energy

The solutions reported here introduce the waves at t = 0 in (2.14) with infinite
spatial scale. Wave refraction, iφζ/2 in (2.8), immediately transfers wave energy
to the smaller scales of the balanced relative vorticity ζ . This giant leap across
wavenumbers is not a direct cascade of wave energy in the sense of Kolmogorov.
And because of wave escape, the wave energy that is so efficiently transferred to
eddy scales by refraction does not undergo a turbulence-driven direct cascade to the
small length scales at which the wave dissipation in (2.9) is effective. This conclusion
hinges on the assumption of a barotropic balanced flow and fixed vertical wavenumber.
Similar to the vertical-plane-wave model, shallow-water models lack wave capture
and an efficient direct cascade of wave energy (e.g. McIntyre 2009). In less idealized
models with balanced baroclinic shear, the vertical wavenumber can increase, and a
direct cascade, perhaps resulting in wave capture, can ensue; stimulated generation
might then be much stronger than in the vertical-plane-wave model considered here.

7.2. Regimes of wave-modified turbulence
Geostrophic straining accounts for most of the stimulated generation of wave energy
in the examples considered in this paper. But refraction plays a fundamental role in
these solutions with the uniform initial wave velocity in (2.14), because refraction
creates the initial gradients of wave velocity that are then enhanced by geostrophic
straining. We experimented by changing the initial condition of φ to an eddy-scale
plane wave and repeated all the 2-D turbulence solutions; the different initial condition
significantly suppresses the initial refraction stage, but otherwise yields long-term
solutions that are qualitatively similar to the solutions discussed above. Thus, to
the extent that the uniform-wave initial condition (2.14) idealizes the generation of
large-scale upper-ocean inertial oscillations by storms (e.g. Moehlis & Llewellyn
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Smith 2001; Danioux et al. 2015), the initial refraction is a loss of lateral coherence,
or a type of inertial pumping (Young & Ben Jelloul 1997; Klein, Llewellyn Smith &
Lapeyre 2004), which is accompanied by an extraction of energy from the balanced
flow by the waves.

Although 10–20 % of the balanced kinetic energy is converted into wave potential
energy, and despite the wave breakage of the symmetry between cyclones and anti-
cyclones, the wave-modified turbulence in § 4 remarkably resembles waveless two-
dimensional turbulence (e.g. McWilliams 1984): we still observe robust vortices and
an increase in vortex length scale due to merger of like-signed vortices. Figure 7
shows small changes in the potential vorticity q and much larger changes in the wave
PV qw induced by changing the dispersivity. In this sense, the turbulent evolution is
insensitive to wave modification.

To see significant wave modification of the turbulence we increased the amplitude
of the initial wave in (2.14) so that Uw = 6Ue (in § 4, Uw = 2Ue). With this level of
wave energy the wave-modified 2-D turbulence differs qualitatively from the waveless
variety (not shown). The potential vorticity develops highly filamentary structures with
little vortex formation; this inhibition of vortex formation is stronger in the weakly
dispersive limit.

7.3. Energy transfers can be bi-directional in non-turbulent balanced flows
In all solutions considered in §§ 2 and 4, the energy transfer is always from
the balanced flow into the waves. This positive energy conversion, Γr + Γa > 0,
remains true for very long turbulence simulations (not shown), because the refractive
conversion is small at large time and turbulent stirring always increases lateral wave
gradients: Γr + Γa ≈ Γa > 0.

But the energy transfers can be bi-directional for non-turbulent flows. To illustrate
this process, we consider a solution with initially uniform wave and ψ(x, 0) =
sin x + sin y. This non-turbulent balanced flow consists of two vortices of opposite
signs; there can be no inverse cascade from this initial condition because ψ(x, 0)
is already at the domain scale. Starting from the initial uniform wave, the refractive
conversion generates wave potential energy P at the expense of balanced kinetic
energy K (figure 14). After this initial refractive stage, however, P and K oscillate
about equilibrium levels and there are quasi-periodic energy transfers back and forth
between P and K. In this solution, the refractive conversion Γr accounts for most of
the quasi-periodic exchanges between K and P .

7.4. The correlation of wave amplitude with relative vorticity
A secondary result is the strong time dependence of the correlation r, defined in (4.7),
between incoherent waves and the relative vorticity; r measures the concentration of
waves into cyclones or anti-cyclones (Danioux et al. 2015). Refraction concentrates
waves into anti-cyclones and expels them from cyclones, thereby generating an initial
strong negative r (see figure 8c). And Ehrenfest’s theorem provides perhaps the
simplest explanation for this concentration – see (3.17). As conjectured by Danioux
et al. (2015), the subsequent return of r towards zero (and even to positive values in
the case }= 0.5) is partially due to the unsteady geostrophic advection. The NIW-QG
coupling compounds the unsteady advection: the dramatic initial concentration of
waves into anti-cyclones weakens those vortices, with ensuing development of positive
skewness of relative vorticity (see figure 8d); the vorticity skewness increases with
decreasing dispersivity because weakly dispersive waves extract more energy from
the balanced flow (see figure 8).
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FIGURE 14. (Colour online) Diagnostics of an illustrative solution with initially uniform
wave and ψ(t = 0) = sin x + sin y, with α = 0.1 and } = 2. (a) Energy difference about
initial condition. (b) Wave potential energy budget.

7.5. Reconciling action conservation with RSP of wave kinetic energy
A main difficulty in making a connection between the NIW-QG model and earlier
studies, such as those in table 1, is that the theory uses the Lagrangian-mean
geostrophic flow as a primary variable. Previous studies generally employ an Eulerian
wave-mean decomposition. Taylor & Straub (2016), for example, use frequency
filtering to separate low-frequency motions (Eulerian mean) from high-frequency flow
(dominated by near-inertial waves). Taylor & Straub find energy exchange between
low-frequency (eddy) kinetic energy and high-frequency (near-inertial) kinetic energy
resulting from both vertical and horizontal Reynolds stresses; Taylor & Straub refer
to this energy transfer as the ‘advective sink’, meaning a sink of low-frequency,
Eulerian-mean kinetic energy. The Reynolds shear production RSP in (6.12) is
analogous to the horizontal part of the advective sink.

The Reynolds stresses diagnostics of prior studies in table 1 might seem incompati-
ble with fundamental aspects of the NIW-QG system. For example, the wave action
A in (3.1) differs from the wave kinetic energy |φ|2/2 only by the constant factor f0.
Thus NIW-QG action conservation seems inconsistent with Reynolds stress transfer
of kinetic energy from eddies to waves. But this impression is incorrect: Reynolds
stresses are not inconsistent with conservation of A, nor with stimulated generation.

To understand this, note that conservation of A in (3.10) is a statement about
the leading-order wave velocities encoded in φ; the balanced kinetic energy K also
involves higher-order wave kinetic energy in the form of the ‘Stokes kinetic energy’
KS: see (6.3) and the surrounding discussion. A main point from § 6.2 is that the
energy transferred from the Eulerian-mean velocity by RSP is accounted for by KS

(rather than the leading-order wave kinetic energy f0A).
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At first glance it might seem that because stimulated generation results in an
increase in wave potential energy P , it must necessarily involve a transfer from
eddy potential energy. The vertical-plane-wave model is a counterexample: the eddies
are barotropic and there is therefore no eddy potential energy to transfer. Indeed, if
the eddies are barotropic, then RSP is the only pathway between the Eulerian-mean
kinetic energy KE and wave energy. This rather obvious fact is deeply hidden by
the Lagrangian-mean average: the RSP transfer out of KE passes first through KS on
the way to P . The intermediate passage through KS is an inevitable aspect of the
Lagrangian-mean formulation of the NIW-QG system. All of these transfers can be
diagnosed using Γa, Γr and ΓS and (6.13) relates Reynolds shear production to the
three Γ values.

A full investigation of NIW-QG energetics, including diagnosis of Γr, Γa and ΓS

in solutions of the Boussinesq equations, is beyond the scope of this article. But
we emphasize a crucial simplifying feature of the NIW-QG approximation: there are
no important Stokes corrections to pressure and buoyancy, and therefore, to leading
order, the Lagrangian-mean velocity is equal to the balanced velocity based on an
Eulerian-mean pressure field. In principle, this is a straightforward way of diagnosing
Lagrangian-mean velocities from numerical solutions of the Boussinesq equations.

7.6. Final remarks
There are many caveats to the application of our results to the post-storm oceanogra-
phic problem. Notably, the lack of geostrophic vertical shear suppresses important
mechanisms of vertical refraction and straining, which introduce interesting modifica-
tions of the near-inertial wave physics (e.g. Thomas 2012) and can produce strong
energy extraction by near-inertial waves (Shakespeare & Hogg 2017). And our focus
on quasi-inviscid initial value problems downplays the role of dissipation, but in
forced-dissipative solutions, wave dissipation likely controls the strength of stimulated
generation. Finally, better understanding the connection between numerical modelling
studies (e.g. Taylor & Straub 2016) and the NIW-QG theory (XV; Wagner & Young
2016) deserves further investigation. We hope to explore these topics in future work.
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Appendix A. Details of the NIW-QG model
A.1. The NIW-QG model

Using multiscale asymptotic theory, Wagner & Young (2016) derive a model for the
coupled evolution of QG balanced flow, near-inertial waves and their second harmonic.
Assuming that the second harmonic is zero (B = 0), the Wagner & Young (2016)
coupled model recovers the XV model in the limit where the waves have vertical
scales much smaller than the balanced flow. In Wagner & Young (2016), the PV is

q= (1+ L)ψ + βy+
1

2f0

[
1

1
2
|LA|2 + iJ(LA?, LA)

]
, (A 1)
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where 1
def
= ∂2

x + ∂2
y and L

def
= ∂z( f0/N)2∂z, and LA is the back-rotated near-inertial

velocity; the leading-order wave plus balanced flow velocity is

u+ iv = LAe−if0t
−ψy + iψx, (A 2)

where ψ is the streamfunction of the Lagrangian-mean (geostrophically balanced) flow.
The PV is materially conserved,

qt + J(ψ, q)= 0, (A 3)

and the wave back-rotated velocity satisfies the YBJ equation,

LAt +
i
2

f01A+ J(ψ, LA)+ iLA
(

1
2
1ψ + βy

)
= 0. (A 4)

The special family of solutions with a barotropic balanced flow ψ = ψ(x, y, t),
f -plane (β = 0), uniform background buoyancy frequency N=N0 and LA= eimz φ(x, y)
wave velocity yields the vertical-plane-wave model in (2.7)–(2.8). The plane-wave
model is a solution of both XV and Wagner & Young (2016) equations because the
barotropic flow assumption yields an infinite vertical scale separation between waves
and balanced flow.

A.2. Stokes drift
The horizontal component the Stokes drift of near-inertial waves is (Wagner & Young
2016)

uS
+ ivS

=
i
f0
(Mzz∂

?M?
−M?

z ∂
?Mz), (A 5)

wS
=

i
f0
(M?

z ∂∂
?M − ∂Mz∂

?M)+ c.c., (A 6)

where M = ( f0/N)2Az and Mz = LA, and we recall ∂ = (∂x − i∂y)/2. In the vertical-
plane-wave model, the back-rotated velocity is Mz = φeimz, and the horizontal Stokes
drift above simplifies to

(uS, vS)= (Ay,−Ax), (A 7)

where A= |φ|2/2f0 is the action density. Thus the Stokes drift of the vertical-plane-
wave model is horizontally non-divergent, with streamfunction −A. The vertical
component of the Stokes drift reduces to

wS
=

1
f0m
[∂(φ∂?φ?)+ ∂?(φ?∂φ)]

=
1
m

[
1

1
2
A− η−1

∇ · (k̂×F)
]
, (A 8)

where we used (3.8) and the identities

1= 4∂∂? and J( f , g)= 2i(∂?f ∂g− ∂f ∂?g). (A 9a,b)

An important property of the NIW-QG model is that there is no Lagrangian-mean
vertical velocity:

wE
+wS

= 0. (A 10)

Hence, using (A 8) and ψ = ψE
− A, we obtain an alternative expression for the

potential vorticity (2.6) in terms of Eulerian-mean fields:

q=1ψE
+mwE. (A 11)
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Appendix B. Quadratic conservation laws
B.1. Ehrenfest’s theorem

To obtain (3.11) we begin by noting that with F defined in (3.6)

∂tF =
i
2
λ2(φt∇φ

?
− φ?t∇φ)+

i
4
λ2
∇(φφ?t − φ

?φt). (B 1)

Multiplying the wave equation by i∇φ?, adding to the complex conjugate and using
identities such as

∇φ? J(ψ, φ)−∇φ J(ψ, φ?)= J(φ?, φ)∇ψ, (B 2)

one eventually finds

∂tF −
i
4
λ2
∇(φ φ?t − φ

? φt)+
1
4
λ2η(1φ∇φ? +1φ?∇φ)

=−∇ψ ∇ · (k̂×F)+ η
1
2
ζ ∇A+

i
2
λ2(Dφ∇φ

?
−Dφ?∇φ). (B 3)

Taking the domain average, noting that the second and third terms on the left have
zero average, and using the identity

〈∇ψ∇ · (k̂×F)〉 = 〈(F · ∇)k̂×∇ψ〉 − 〈k̂× (ζF)〉, (B 4)

we obtain (3.11) with the dissipative term

εF
def
=

i
2
λ2
〈Dφ∇φ

?
−D?

φ∇φ〉. (B 5)

B.2. Wave potential energy
To obtain the wave potential energy equation (3.12) we take the dot product of
∇φ? with gradient of the wave equation (2.8) and add the complex conjugate; the
calculation is best done using index notation. The final result is

Pt +∇ ·

[
ugP +

1
2
ζ F +

λ2

4
i
2
η((∇φ · ∇)∇φ? − (∇φ? · ∇)∇φ)

]
=

1
2
ζ ∇ ·F −

λ2

2
φ,kσklφ

?
,l +
λ2

4
(∇φ · ∇Dφ? +∇φ · ∇Dφ?), (B 6)

where ug def
= k̂×∇ψ is the geostrophic velocity and

σkl
def
=

1
2(u

g
k,l + ug

l,k) (B 7)

is the geostrophic strain tensor. The local equation (B 6) integrates to (3.12), with the
dissipative term

εP =
λ2

4
〈∇φ · ∇Dφ? +∇φ

?
· ∇Dφ〉 =−

λ2

4
〈1φ?Dφ +1φDφ?〉. (B 8)
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B.3. Balanced kinetic energy
To obtain the balanced kinetic energy equation we first multiply the PV equation (2.7)
by −ψ :

Kt +∇ · [−ψ(∇ψt + ugq)] =ψqw
t −ψDq. (B 9)

To attack ψqw
t on the right, we use the expression for qw in (3.9). Thus

ψqw
t =∇ ·

1
2

[
ψ

(
∇At +

2
η

k̂×F t

)
−∇ψ At

]
︸ ︷︷ ︸

def
=−H1

+
1
2
ζAt + η

−1ug
·F t. (B 10)

Taking the dot product of (B 3) with ug we have

ug
·F t = ∇·

{
ug

[
i
2
λ2(φφ?t − φ

?φt)+
1
4
ηλ2
|∇φ|2

]
−

1
4
ηλ2
[∇φ ug

· ∇φ? +∇φ?ug
· ∇φ]

}
︸ ︷︷ ︸

def
=−ηH2

+ η
1
2
ζJ(ψ,A)+

1
2
ηλ2φ,kσklφ

?
,l + ug

·
i
2
λ2(Dφ∇φ

?
−Dφ?∇φ). (B 11)

Thus

∂tK+∇ · [−ψ(∇ψt + ugq)+H1 +H2] =−
1
2ζ∇ ·F +

1
2λ

2φ,kσklφ
?
,l + ξ −ψDq,

(B 12)

where

ξ =
1
2

f−1
0 (φ?Dφ + φDφ?)

1
2
ζ + f−1

0 ug
·

i
2
(Dφ∇φ

?
−Dφ?∇φ) (B 13)

is the contribution of wave dissipation to the local balanced kinetic energy budget.
Interestingly, the first term on the right of (B 13) reveals that the dissipation of wave
action in anti-cyclones is a source of balanced kinetic energy. The second term on
the right of (B 13) shows that the alignment of the ‘action-flux dissipation vector’
i(Dφ∇φ

?
−Dφ?∇φ), with the geostrophic velocity is also a source of balanced kinetic

energy. The local equation (B 12) integrates to the balanced kinetic energy equation
(3.13) with the dissipative terms

Ξ
def
= 〈ξ〉 and εK =−〈ψDq〉. (B 14a,b)

B.4. Specific expressions with biharmonic dissipation
The dissipative terms in (2.7) and (2.8) add small dissipation to the energy equations
in § 3. The wave kinetic energy dissipation added to (3.1) is

εK =−νw〈|1φ|
2
〉. (B 15)
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The dissipation of wave potential energy in (3.12) is

εP =−
1
2λ

2νw〈|∇1φ|
2
〉. (B 16)

Similarly, the balanced kinetic energy dissipation in (3.13) is

εK = κe〈ψ1
2q〉 = κe〈q12ψ〉. (B 17)

The wave dissipation contribution to the balanced kinetic energy budget is

Ξ =
1
2
νwf−1

0

〈
1
2
ζ (φ?12φ + φ12φ?)

〉
+ νwf−1

0

〈
i
2
ψ[J(φ?, 12φ)− J(φ, 12φ?)]

〉
.

(B 18)

In all solutions of initial value problems reported in this paper, the dissipative terms
(B 15), (B 16), (B 17) and (B 13) account for less – typically much less – than 10 %
of the energy tendencies.
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