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We study stimulated generation—the transfer of energy from balanced flows to existing
internal waves—using an asymptotic model that couples barotropic quasi-geostrophic
flow and near-inertial waves with eimz vertical structure on the f -plane. A detailed
description of the conservation laws of this vertical-plane-wave model illuminates the
mechanism of stimulated generation associated with vertical vorticity and lateral strain.
There are two sources of wave potential energy, and corresponding sinks of balanced
kinetic energy: the refractive convergence of wave action density into anti-cyclones (and
divergence from cyclones); and the enhancement of wave-field gradients by geostrophic
straining. We quantify these energy transfers and describe the phenomenology of stim-
ulated generation using numerical solutions of an initially uniform inertial oscillation
interacting with mature freely evolving 2D turbulence. In all solutions, stimulated gen-
eration co-exists with a transfer of balanced kinetic energy to large scales via vortex
merging. And geostrophic straining accounts for most of the generation of wave potential
energy, representing a sink of 10-20% of the initial balanced kinetic energy. But refraction
is fundamental because it creates the initial eddy-scale lateral gradients in the near-
inertial field that are then enhanced by advection. In these quasi-inviscid solutions, wave
dispersion is the only mechanism that upsets stimulated generation: with a barotropic
balanced flow, lateral straining enhances the wave group velocity, so that waves accelerate
and rapidly escape from straining regions. This wave escape prevents wave energy from
cascading to dissipative scales.

Key words:

1. Introduction

The inverse cascade, acting on balanced ocean macroturbulence, transfers energy
towards large spatial scales. But a statistically steady ocean circulation requires energy
dissipation at the same rate as it is supplied by wind. Thus equilibration of the ocean
macroturbulence requires ageostrophic processes, acting in opposition to the inverse
cascade, to produce a transfer of energy towards the centimeter scales at which molecular
viscosity is effective. Mechanisms that might result in this down-scale transfer include, but
are not limited to, surface and benthic boundary-layer turbulence, lee-wave generation
by mesoscale eddies negotiating bottom topography, and the spontaneous generation of
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Table 1. Summary of model-based studies of energy extraction from balanced flow by
near-inertial waves.

Study Framework Energy transfers from a mean
flow to existing near-inertial
waves are referred to as

Gertz & Straub (2009) Barotropic 2D double-gyre solutions
coupled with forced 3D near-inertial
waves.

2D–to–3D energy transfer

Thomas (2012) Near-inertial waves in a baroclinic
geostrophic flow undergoing frontoge-
nesis.

deformation shear production

Taylor & Straub (2016) Boussinesq channel-flow with both
high- and low-frequency forcing.

advective sink

Barkan et al. (2016) Boussinesq channel-flow with both
high- and low-frequency forcing.

direct extraction

Shakespeare & Hogg (2017) Boussinesq channel-flow with low-
frequency forcing. Spontaneous gen-
eration in the surface layer and
stimulated generation in the interior.

interior amplification

internal waves by upper-ocean frontal instabilities; see Nagai et al. (2015) for a recent
review.

We focus on a mechanism first identified by Gertz & Straub (2009): externally-forced
near-inertial waves might provide an energy sink for large-scale balanced flow. Since
Gertz & Straub (2009), several other studies, summarized in table 1, have argued for
significant energy transfer from balanced flows to near-inertial waves. A common aspect
of the studies in table 1 is that the near-inertial waves are first introduced by external
forcing (e.g., wind) at the inertial frequency and then grow by extracting energy from
the balanced flow.

(An exception in table 1 is the study of Shakespeare & Hogg (2017), in which near-
inertial waves are generated spontaneously—without external forcing—at density fronts
near the surface. These waves then radiate vertically downwards into the interior and
amplify by extracting energy from deep balanced flow. We have included Shakespeare &
Hogg (2017) in table 1 because, as far as deep interior amplification is concerned, the
details of the shallow generation process are probably immaterial.)

The studies in table 1 have shown that externally generated near-inertial waves can
extract energy from a pre-existing balanced flow. Those studies, however, have diverse
methodology and diagnostic framework, so there is not a consensus that the observed
amplification of near-inertial waves results from a single mechanism. In other words, it
is possible that near-inertial wave amplification occurs through a variety of mechanisms
and each instance must be analyzed and understood on its own peculiar terms. But in a
certain limit, described in section 2.2, there is a single underlying mechanism—stimulated
generation—that is responsible for energy transfer between waves and balanced flow (Xie
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& Vanneste 2015, XV hereafter). While it is unclear whether this limit applies to the
studies in table 1, XV provides a robust yet simple theoretical framework for studying
energy transfers between balanced flows and near-inertial waves.

Using a variational formulation of the generalized Lagrangian-mean, XV derived a
phase-averaged model of the coupling between weakly non-linear near-inertial waves
and quasi-geostrophic (QG) flow. Wagner & Young (2016) derived a similar coupled
model via Eulerian multiple-time expansion; these authors include the second harmonic
of the primary near-inertial wave and simplify the wave dynamics by assuming moderate
QG vertical shears. In both coupled models the near-inertial waves are governed by the
equation of Young & Ben Jelloul (1997) (YBJ hereafter) and the balanced flow satisfies
QG dynamics—the waves contribute phase-averaged quadratic terms at the same order
of the QG potential vorticity (PV). Salmon (2016) provides a useful perspective on
this “NIW-QG” model; without assuming that the waves are near-inertial, and within a
single variational framework, Salmon unifies XV’s model with the wave-mean flow models
of Bühler & McIntyre (1998) and Wagner & Young (2015). Salmon also emphasizes a
revealing analogy between vortex-wave interactions and classical electrodynamics.

To distinguish energy extraction by existing waves from spontaneous generation, and
to complete an electrodynamic analogy, XV refer to the transfer of energy from balanced
flow to externally forced near-inertial waves as stimulated generation. The more widely
studied process of spontaneous generation is the emission of internal waves arising from
the slow evolution of balanced flow in the absence of external forcing at wave frequencies
(Vanneste 2013). Spontaneous generation is inefficient at small and moderate Rossby
numbers and its global impact on ocean energetics is probably small (Danioux et al.
2012; Nagai et al. 2015). And spontaneous generation is localized at sharp submeoscale
fronts with order-one Rossby number (e.g., Shakespeare & Hogg 2017) while the
stimulated variety operates even at small Rossby numbers characteristic of most interior
oceanic conditions, provided only that internal waves are introduced by external forcing.
Throughout the ocean, internal waves are reliably forced by wind and tides and thus
stimulated generation is a leading contender as a mesoscale energy sink.

Although XV and Wagner & Young (2016) use significantly different approaches, their
results are consistent with one another. This consistency indicates that the NIW-QG
model provides the unique small-amplitude evolution equations describing the inter-
action between near-inertial waves and geostrophic flow. In the small-amplitude limit
the flow can be unambiguously separated into weakly non-linear internal waves and
quasigeostrophic eddies, with perturbative coupling between waves and eddies (Salmon
2016). To the extent that the studies in table 1 are also in this weak-interaction limit, their
results should—in principle—be described the NIW-QG model. “In principle” because
the distinction between Lagrangian-mean and Eulerian-mean velocities complicates the
diagnosis of energy transfers between eddies and waves (see section 6 for further dis-
cussion) and because the Rossby number is large in some studies (e.g., Barkan et al.
2016). Frontal sharpening and low Richardson number processes, which are described in
Thomas (2012), are outside the scope of the NIW-QG model.

XV emphasize that a central feature of the NIW-QG model is that there are two
integral energy conservation laws for: (1) near-inertial kinetic energy and (2) the sum
of near-inertial potential energy and total balanced energy. The inevitable reduction of
near-inertial length scales by advection and refraction is accompanied by an increase in
wave potential energy and, because of conservation law (2), a reduction in the energy of
the balanced flow. These features, and the necessity of an externally forced wave, are the
defining characteristics of stimulated generation.

Here we investigate perhaps the simplest example of stimulated generation obtained
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from the NIW-QG model by assuming barotropic QG flow and vertically-planar near-
inertial waves. Because the balanced flow is barotropic, while the near-inertial wave is
three dimensional, this “vertical-plane-wave model” resembles the original scenario of
Gertz & Straub (2009). We show that the convergence of wave kinetic energy into anti-
cyclones and geostrophic straining of the waves reduces the wave length scale, amplifies
gradients of wave amplitude, and converts balanced kinetic energy into near-inertial
potential energy.

2. The vertical-plane-wave model

The vertical-plane-wave model is obtained by assuming barotropic balanced flow, with
streamfunction ψ(x, y, t), a uniform background buoyancy frequency N0, and a single
vertically propagating wave with vertical structure eimz and back-rotated wave velocity
φ(x, y, t). With these idealizations, appendix A derives the vertical-plane-wave model
starting from the phase-averaged equations of Wagner & Young (2016); XV obtain the
same model from their version of the phase-averaged equations. In either case, the leading-
order wave plus the leading-order balanced velocity (u, v, w), pressure p, and buoyancy
b are:

u+ iv = ei$ φ− ψy + iψx ; (2.1)

w = im−1ei$ ∂φ+ cc ; (2.2)

p = −iηei$ ∂φ+ cc + f0ψ ; (2.3)

b = mηei$ ∂φ+ cc . (2.4)

Above, $ = mz − f0t is the phase of the vertical plane wave, η = f0λ
2 is the wave

“dispersivity,” where λ = N0/f0m is a horizontal scale, cc denotes complex conjugate,
and

∂
def
= 1

2 (∂x − i∂y) (2.5)

is a differential operator. The complex field φ(x, y, t) in (2.1) is the back-rotated velocity
of the near-inertial waves; in (2.2)–(2.4) the other wave fields are expressed in terms of
∂φ. The compact representation of the wave variables in terms of φ follows YBJ.

The balanced variables are represented by the streamfunction ψ. Because the Stokes
pressure correction is negligible for near-inertial waves (Wagner & Young 2016), the
eddies are balanced in the sense that ψ = p̄/f0, where p̄ is either the Eulerian-mean
or Lagrangian-mean pressure. Moreover, the velocities obtained from ψ in (2.1) are
Lagrangian-mean velocities, e.g., the velocity (−ψy, ψx) advects the material invariant
potential vorticity in (2.7) below. We have lightened the notation by using ψ, rather than
ψL; the implicit L is particularly important in section 6.

The PV of the balanced flow is expressed in terms of ψ and φ by

q = 4ψ︸︷︷︸
def
= ζ

+ 1
f0

[
1
44|φ|

2 + i
2J(φ?, φ)

]
︸ ︷︷ ︸

def
= qw

, (2.6)

where4 def
= ∂2x+∂2y is the horizontal Laplacian and J(f, g)

def
= fxgy−fygx is the Jacobian,

and the superscript star ? denotes complex conjugation. Equation (2.6) is the “inversion
relation”: q and φ determine the Lagrangian-mean flow via ψ = 4−1(q − qw) where qw

defined in (2.6) is the “wave potential vorticity.” Once ψ is obtained by inversion, the
field equations (2.7) and (2.8) below can be time-stepped.

Using the generalized Lagrangian-mean formulation Bühler & McIntyre (1998) showed
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that the assumption of weak interaction between internal waves and balanced flow results
in wave-averaged term qw contributing to the materially conserved PV; see also Grimshaw
(1975). In (2.6) the wave-averaged feedback on the balanced flow is expressed concisely
in terms of the backrotated velocity φ via the quadratic terms in qw.

2.1. The evolution equations

The balanced flow evolves according to PV advection

qt + J(ψ, q) = Dq ; (2.7)

the back-rotated velocity satisfies the wave equation

φt + J(ψ, φ) + φ i
2ζ −

i
2η4φ = Dφ . (2.8)

Dq and Dφ in (2.7) and (2.8) are dissipative terms described below.
The wave equation (2.8) is the YBJ model in the case where the near-inertial wave

has eimz structure. The back-rotated wave velocity, φ, evolves through dispersion—the
last term on the left of (2.8)—and nonlinear advection and refraction by the second and
third terms in (2.8). Without advection, (2.8) is analogous to Schrödinger’s equation
(e.g., Landau & Lifshitz 2013, page 51). The relative vorticity, ζ = 4ψ, is the potential,
with negative ζ a well, and the “dispersivity,” f0λ

2, is Planck’s constant (Balmforth
et al. 1998; Balmforth & Young 1999; Danioux et al. 2015). The quantum analogy may
be useful for some readers, but it is not necessary for the understanding of the results
below.

The terms on the right of (2.7) and (2.8), Dq and Dφ, represent small-scale dissipation.
Small-scale dissipation is necessary to absorb the forward transfers of potential enstrophy
and wave kinetic and potential energies in the numerical solutions reported below. We
find that biharmonic diffusion and viscosity,

Dq = −κe42q and Dφ = −νφ42φ , (2.9)

are sufficient to extend the spectral resolution compared to Laplacian dissipation. In
practice, we choose κe and νφ so that the highest 35% of the modes lie in the dissipation
range and aliased wavenumbers are strongly damped.

2.2. The small-amplitude limit and the validity of the NIW-QG approximation

The development of the NIW-QG model is ordered first by assuming that the waves
are weak in the sense that

ε
def
=

Uw
f0L

� 1 . (2.10)

Above, L is a characteristic scale of both waves and balanced flow and Uw is a charac-
teristic near-inertial wave velocity. The other small parameter in the expansion is the
Rossby number of the balanced flow

Ro
def
=

Ue
f0L

� 1 , (2.11)

where Ue is the eddy velocity. The inequalities in (2.10) and (2.11) must be satisfied in
order to obtain the NIW-QG system. But XV and Wagner & Young (2016) make a third
assumption: Ro = ε2, or equivalently that Ue = εUw. The resulting distinguished limit,

ε→ 0 , with Ro = ε2 , (2.12)

promotes the importance of wave-averaged effects so that qw appears at an early, and
accessible, order in the expansion. Thus (2.12) is for convenience rather than necessity.
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Table 2. Description of parameters of Lamb-Chaplygin simulation. The initial condition have
Rossby number Ro = Ueke/f0 ≈ 0.05, wave dispersivity } = f0λ

2ke/Ue ≈ 1, and wave amplitude
α = Ro(Uw/Ue)

2 ≈ 3.75.

Parameter Description Value

R = 2πk−1
e Dipole radius Ld/15 ≈ 84 km

Ue Dipole strength 5× 10−2 m s−1

Uw NIW speed 5× 10−1 m s−1

N0 Buoyancy frequency 5× 10−3 s−1

f0 Coriolis frequency 10−4 s−1

2πm−1 NIW vertical wavelength 325 m
κe PVbiharmonic diffusivity 5× 107 m4 s−1

νw NIW biharmonic viscosity 1× 107 m4 s−1

N Number of modes 512
L Domain size 2π × 200 km

The asymptotic ordering in (2.12) does not imply that the QG–NIW system fails for
weaker waves, i.e., if Uw is comparable to, or even smaller than, Ue. Making Uw weaker
than Ue delays wave-averaged effects to longer times—it does not, per se, invalidate
the expansion. The main problem with the weak-wave limit is that other physics, not
considered in the NIW-QG system, will contend with wave-averaged effects on ultra-long
time scales. For example, even without waves, order Ro2 ageostrophic effects modify the
evolution of balanced flow and produce departures from QG (e.g., see Muraki, Snyder &
Rotunno 1999).

To summarize: the main conditions for the validity of the QG–NIW system are (2.10)
and (2.11); additionally, validity of the wave equation (2.8) requires that the wave
frequency is close of f0. The weak-wave limit Uw/Ue → 0 is valid within the NIW-
QG framework: in that limit the system reduces to the barotropic potential vorticity
equation and the YBJ equation for a passive wave field.

The standard QG approximation is used successfully even when Ro ∼ 1 (Hoskins 1975)
and we expect the NIW-QG model to enjoy similar success if� is replaced by < in (2.11).
Flows with Ro > 1 eddies, such as those reported in Barkan et al. (2016), evolve on time
scales close to f−10 , and an Eulerian decomposition into near-inertial waves and eddies is
ill-defined unless there is spatial scale separation between eddies and waves. These large
Rossby number flows are outside the purview of the NIW-QG model (XV; Wagner &
Young 2016).

2.3. An illustrative solution: the Lamb-Chaplygin dipole

As a preamble to our discussion of stimulated generation in freely-evolving 2D tur-
bulence, we consider an example in which the initial QG flow is the Lamb-Chaplygin
dipole—see figure 1. This dipole is an exact solution of the Euler equations on an infinite
two-dimensional plane where the vorticity is confined to a circle of radius R (Meleshko
& Van Heijst 1994). The relative vorticity, steady in a frame moving at uniform zonal
velocity Ue, is

ζ =
2Ueκ

J0(κR)

{
J1(κr) sin θ , if r 6 R ,

0 , if r > R .
(2.13)
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Figure 1. Snapshots of the Lamb-Chaplygin dipole solution with parameters presented in
table 2. Contours depict potential vorticity, q/(Ueke) = [−1.5,−0.5, 0.5, 1.5], with dashed lines
showing negative values. The upper row shows the wave action density |φ|2/2f0. The lower row
shows the wave buoyancy; the buoyancy scale is B = kemUwf0λ

2. These plots only show the
central (1/5)2 of the simulation domain.

Above r2 = (x− xc)2 + (y − yc)2 is the radial distance from the center (xc, yc), tan θ =
(y − yc)/(x − xc), and Jn is the n’th order Bessel function. The matching condition at
r = R is that J1(κR) = 0 and the smallest solution is κR ≈ 3.8317. If there is no coupling
to the wave φ, then the dipole (2.13) is a solution of the QG equation (2.7).

We strongly perturb the dipole in (2.13) by seeding a wave with initial velocity:

φ(x, y, t = 0) = 1+i√
2
Uw . (2.14)

If there was no dipole, this initial condition produces a spatially uniform near-inertial
oscillation with speed Uw. Further parameters of this solution are summarized in table
2; note Uw = 10Ue.

We integrate the vertical plane–wave model using a standard collocation Fourier spec-
tral method. We evaluate the quadratic non-linearities, including in the wave potential
vorticity (2.6), in physical space and transform the product into Fourier space. We time
march the spectral equations using an exponential time differencing method with a fourth
order Runge-Kutta scheme—for details, see Kassam & Trefethen (2005) and Cox &
Matthews (2002).

With the initial condition in (2.14), qw in (2.6) and ∇φ are both zero at t = 0. The
refractive term in the wave equation (2.8), however, immediately imprints itself onto φ
thus creating non-zero ∇φ and non-zero qw. Once refraction has created gradients in φ,
the advective term in (2.8) can further distort φ and increase ∇φ. This scale reduction
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Figure 2. (a) Snapshot of q (contours) and ζ (colors) at t × Ueke = 20. (b) Snapshot of
q (contours) and wave PV qw (colors). Both black lines and colors depict the contour levels
[−1.5 ,−0.5 , 0.5 , 1.5]× (Ueke). Solid lines and reddish colors depict positive values; dashed lines
and greenish colors show negative values.

of φ is most evident in the wave buoyancy shown in lower row of figure 1. Figure 1 also
shows the well-known focussing of waves into the negative vortex. But the wave feedback
on the mean flow through qw then results in distortion and shearing of the dipole so that
the negative vortex loses its integrity; the lop-sided dipole then starts to drift. Once the
negative vortex is distorted to small scales it no longer acts as an effective potential well:
the trapping of wave energy by the deformed anti-cyclone is weaker than in the initial
condition. In fact, figure 1, which shows the materially conserved PV q, understates the
development of small scales in the relative vorticity ζ: figure 2 shows that both ζ and qw

develop small scales with significant cancelation resulting in the relatively smooth field
q = ζ + qw shown in figure 1. Thus at the final time in figure 1 the waves are no longer
strongly trapped in the region with ζ < 0. This phenomenology, including significant
cancellation between ζ and qw, is also characteristic of wave-modified two-dimensional
turbulence in section 4.

To understand the results in figure 1 and quantify the stimulated generation of wave
energy, we need to understand the conservation laws of the vertical-plane-wave model.

3. Conservation laws of the vertical-plane-wave model

XV noted that the vertical-plane-wave model in (2.6) through (2.8) inherits two
quadratic conservation laws from the parent NIW-QG model: if there is no dissipation
then wave action,

A def
=
|φ|2

2f0
, (3.1)

and the energy,

E def
= 1

2 |∇ψ|
2 + 1

4λ
2|∇φ|2 , (3.2)

are both separately conserved. Following Bretherton & Garrett (1968), the action in
(3.1) is the wave energy divided by the intrinsic frequency; YBJ observed that to leading
order the wave energy is only kinetic and the intrinsic frequency in (3.1) is the inertial
frequency f0.

The conserved energy density E in (3.2) is the sum of the kinetic energy of the balanced
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flow

K def
= 1

2 |∇ψ|
2 , (3.3)

and the potential energy of the near-inertial waves,

P def
= 1

2b
2/N2

0 = 1
4λ

2|∇φ|2 . (3.4)

Above, b ∝ ∂φ is the wave buoyancy defined in (2.4). We emphasize again that ψ is
the streamfunction of the Lagrangian-mean flow, which is in geostrophic balance; the
Eulerian-mean flow is not in balance. Thus we refer to K is the kinetic energy of the
balanced flow.

XV explain the physical basis of stimulated generation by noting that balanced kinetic
energy K can be converted into wave potential energy P while conserving the integral
of the total energy E in (3.2). Indeed, this conversion must occur if ∇φ is increased by
a combination of refraction and advection in the wave equation (2.8). In the example
shown in figure 1, the initial wave field in (2.14) has infinite spatial scale and therefore
there is no wave potential energy at t = 0. The subsequent evolution in figure 1 involves
creation of non-zero∇φ, corresponding to gain of P at the expense of K: this is stimulated
generation of near-inertial waves.

To substantiate this intuition, and diagnose results from our simulation of wave
modified two-dimensional turbulence, we develop the conservation laws corresponding
to (3.1) and (3.2) in more detail.

3.1. Action conservation equation and action flux

Multiplying the wave equation (2.8) by φ? and adding to the complex conjugate we
obtain a conservation equation for action density

∂tA+ J(ψ,A) +∇·F = 1
2f0

(φ?Dφ + φDφ?)︸ ︷︷ ︸
def
=DA

, (3.5)

where the flux of near-inertial wave action is

F def
= i

4λ
2 (φ∇φ? − φ?∇φ) . (3.6)

The local conservation law (3.5) shows how the wave action A changes due to geostrophic
advection and divergence of the wave flux and dissipation—the second, third, and fourth
terms in (3.5).

The wave action flux F is analogous to the probability current of quantum mechanics
(e.g., Landau & Lifshitz 2013, pg. 57). Using the polar representation φ = |φ|eiΘ, the
wave action flux F can also be written as

F = A η∇Θ , (3.7)

where recall that η = f0λ
2 is the dispersivity. In (3.7), η∇Θ is the “generalized group

velocity” of hydrostatic near-inertial waves, i.e., F is the generalized group velocity
times the action density A. We use the term “generalized” because no WKB-type scale
separation is required to obtain the results above. The connection to standard internal-
wave group velocity is quickly verified by considering a plane near-inertial wave with
Θ = kx+ ly, yielding η∇Θ = N2

0 (k, l)/f0m
2.

Another useful identity involving the action flux F is

∇·
(
k̂ ×F

)
= i

2λ
2J(φ?, φ) , (3.8)

where k̂ is the unit vector perpendicular to the (x, y)-plane. Using (3.8), and the definition
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of action in (3.1), the wave PV qw in (2.6) can be written as

qw = 1
24A+ η−1∇·

(
k̂ ×F

)
. (3.9)

Denoting an average over the domain by 〈〉, and assuming that the action flux
divergence ∇·F vanishes after integration, we obtain from (3.5)

d〈A〉
dt

= εA . (3.10)

where εA
def
= 〈φ?Dφ + φDφ?〉/(2f0) is the domain average of the dissipative term on the

right of (3.5). In the example shown in Figure 1 the total action 〈A〉 is conserved to
within 1% over the course of the integration.

3.2. Ehrenfest’s theorem

The quantum analogy suggests that we should seek an analog of Ehrenfest’s theorem
(the quantum equivalent of Newton’s law that force equals mass times acceleration).
Thus in Appendix B we develop a local conservation law for F . The domain average of
that result is

d〈F〉
dt

= k̂ × 〈ζF〉 − k̂ × 〈(F ·∇)∇ψ〉 − η〈A∇ 1
2ζ〉+ εF . (3.11)

In the quantum analogy, F is momentum and the left hand side of (3.11) is mass times
acceleration; the forces are on the right of (3.11). Starting from the end, εF is a dissipative
term defined in Appendix B. The third term on the right of (3.11) is the force due to
the gradient of the potential ζ/2. The second term on the right of (3.11) represents the
combined effect of stretching and tilting of F by the geostrophic flow. The first term on
the right of (3.11) is a “vortex force,” again due to ζ, but perpendicular to F . The two
k̂× terms on the right lack quantum analogs.

The results in this section are obtained from the wave equation (2.8) without using
the PV equation (2.7). In other words, (3.5)-(3.11) apply to the YBJ equation with eimz

structure regardless of the balanced-flow dynamics. We turn now to energy conservation
and consideration of the PV equation (2.7).

3.3. Energy conservation and conversion

The energy conservation law is considerably more complicated than action conserva-
tion. We sequester the details of the local conservation laws to Appendix B and present
here the simpler results obtained by domain averaging those local conservation laws. The
results in (3.12) through (3.16) below are obtained by: (1) multiplying the wave equation
(2.8) by 4φ?, forming the average 〈〉, and adding the complex conjugate; and by (2)
multiplying the PV equation (2.7) by −ψ and averaging 〈〉.

For the wave potential energy in (3.4) and the balanced kinetic energy in (3.3) we find

d〈P〉
dt

= Γr + Γa + εP , (3.12)

d〈K〉
dt

= −Γr − Γa +Ξ + εK , (3.13)

where the “conversion terms” in (3.12) and (3.13) are

Γr
def
=
〈

1
2ζ∇·F

〉
, (3.14)
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Figure 3. Illustration of energy conversion terms in the Lamb-Chaplygin dipole solution with
parameters presented in table 2. (a) The action flux F overlain on contours of relative vorticity
4ψ/(Ueke) = [−1.5,−0.5, 0.5, 1.5], with dashed lines showing negative values; the scale of the
action flux is F = f0λ

2keU
2
w. (b) The local advective conversion (i.e., the unaveraged Γa) overlain

on contours of streamfunction ψ × (Ue/ke) = [−8,−4,−2, 0, 2, 4, 8].
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Figure 4. Diagnostics of the Lamb-Chaplygin dipole solution with parameters presented in
table 2. (a) Energy change about initial condition. (b) Wave potential energy budget (3.12).

and

Γa
def
= λ2

4 〈4φ
?J(ψ, φ) +4φJ(ψ, φ?)〉 , (3.15)

= −λ
2

2

〈[
φ?x φ?y

] [ −ψxy 1
2 (ψxx − ψyy)

1
2 (ψxx − ψyy) ψxy

] [
φx
φy

]〉
. (3.16)

The dissipative terms, εP , εK and Ξ are defined in appendix B. Ξ in (3.13) is particularly
interesting: dissipation of waves Dφ produces balanced kinetic energy. Summing (3.12)
and (3.13) the “conversion” terms Γr and Γa cancel, and we obtain the conservation law
for total energy 〈E〉 = 〈P +K〉.

The refractive conversion Γr stems from iφζ/2 in the wave equation and is easy to
interpret: the convergence of the wave action flux, ∇·F < 0, into anti-cyclones, ζ < 0, is
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Table 3. The time-integrated budget of wave potential energy and quasigeostrophic kinetic
energy of the Lamb-Chaplygin dipole solutions with parameters provided in table 2. The energy
budgets close within 10−6 %.

Ṗ budget Fractional size (
∫
Ṗdt/∆P) K̇ budget Fractional size (

∫
K̇dt/∆K)

Γr 0.228 -Γr -0.227
Γa 0.778 -Γa -0.774
− − Ξr 0.004
− − Ξa 0.0
χφ -0.006 εψ -0.003

Res. 0.0 Res. 0.0

a source of wave potential energy P; similarly, the divergence of the wave action flux from
cyclones is a source of P. Figure 3a shows the convergence of F into the anti-cyclone
(and divergence from the cyclone) of the dipole solution at t×Ueke = 1, which yields the
sharp initial increase of 〈P〉 discussed below. Ehrenfest’s theorem in (3.11) illuminates
the initial structure of F in figure 3. Because φ is initially uniform, the initial tendency
of F is

∂tF(0) = −ηA∇ 1
2ζ . (3.17)

Thus the action flux is initially anti-parallel to the gradient of relative vorticity (see figure
3a), and wave action converges into anti-cyclones (and diverges from cyclones).

The advective conversion Γa in (3.12) and (3.13) stems from the term J(ψ, φ) in the
wave equation (2.8) and is a source of 〈P〉 due to straining and deformation of the wave
field by the geostrophic flow. The symmetric 2 × 2 matrix in (3.16) is the strain or
deformation tensor of the geostrophic flow. Thus, in analogy with passive scalar gradient
amplification, straining also enhances gradients of the back-rotated near inertial velocity
φ, thereby generating wave potential energy 〈P〉.

3.4. Energetics of the Lamb-Chaplygin dipole solution

Figure 4 shows the energetics of the Lamb-Chaplygin dipole solution in figure 1. In
figure 4a, P increases at the expense of K, while A is conserved. The wave potential
energy budget in figure 4b shows that this stimulated generation occurs in two stages.
First, refraction of the initially uniform wave field causes a dramatic concentration of
waves into the anti-cyclone producing a sharp increase P through Γr. But this rapid
initial energy conversion does not last long because the wave feedback deforms the anti-
cyclone and dispersion radiates waves away from the dipole (see figure 1). Thus in figure
4b, Γr decreases sharply, and eventually reverses sign at t× Ueke ≈ 8.

The second stage of stimulated generation starts after refraction has created dipole-
scale waves. Advection by the balanced flow can then strain the waves, further reducing
their lateral scale (figure 4b). The ensuing advective conversion, Γa, starts at t×Ueke ≈
4. Straining by the balanced flow sustains this advective generation of P. The waves
eventually escape the straining regions through dispersion and the conversion nearly
halts at t×Ueke = 30. The time-integrated Γa accounts for ≈ 78% of the wave potential
energy generation; table 3 summarizes the energy budget.
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3.5. Summary

The expressions for energy conversion in (3.14) and (3.16) clarify the mechanism of
stimulated generation triggered by the initially uniform near-inertial wave in (2.14). First,
refraction causes a convergence of wave action into anti-cyclones. Then advection strains
the waves, reducing their lateral scale. Both processes amplify the lateral gradients of
wave amplitude, thereby generating wave potential energy P at the expense of balanced
kinetic energy K. Wave action A is conserved throughout this process.

In the remainder of this paper, we describe and quantify stimulated generation in an
idealization of an oceanographic post-storm scenario: the uniform initial near-inertial
wave in (2.14) interacts with two-dimensional turbulence.

4. 2D turbulence modified by near-inertial waves

To study the energy exchange between near-inertial waves and geostrophic flow in
a turbulent regime, we consider a barotropic flow that emerges from random initial
conditions integrated for 20 eddy turnover time units. In other words, we first integrate
the initial condition

ψ
(
x, y, t× Ueke = −20

)
=
∑
k,l

ψk cos (kx+ ly + χk) (4.1)

with waveless QG dynamics before introducing the wave in (2.14) at t×Ueke = 0. Above,
χk is a random phase uniformly distributed on [0, 2π), and ψk is the streamfunction
isotropic spectrum

ψk = C ×
{
|k| [1 + (|k|/ke)4]

}−1/2
, (4.2)

with the wavenumber magnitude |k|2 = k2 + l2. The prescribed initial energy U2
e /2

determines the constant C: ∑
k,l

|k|2ψk
2︸ ︷︷ ︸

def
=Ke

= 1
2U

2
e . (4.3)

The kinetic energy spectrum, Ke, peaks at the energy-containing scale k−1e . At scales
larger than k−1e , Ke has a linear dependence on |k|, whereas Ke decays as |k|−3 at scales
smaller than k−1e . This red spectrum ensures insignificant loss of energy by small-scale
dissipation Dq in (2.7). Over the course of the simulations described below, the centroid
wavenumber of the balanced kinetic energy spectrum decreases by 50%; k−1e is thus a
reasonable scale to characterize the size of the balanced flow throughout the evolution.

In the case with no waves, that is qw = 0, the PV equation (2.7) reduces to 2D fluid
mechanics and the quasi-inviscid evolution of a random initial condition is the well-
studied problem of 2D turbulence. Stirring of vorticity 4ψ transfers enstrophy towards
small scales; energy flows to large scales. Most of enstrophy is dissipated within few
eddy turnover times, whereas kinetic energy is nearly conserved. Vorticity concentrates
into localized coherent structures: after 20 eddy turnover time units, the vorticity is
well-organized into an ensemble of vortices that form via like-sign vortex merging (e.g.,
Fornberg 1977; McWilliams 1984).

4.1. Relevant parameters

The scaling

length ∼ k
−1

e , time ∼ (Ueke)
−1 , ψ ∼ Uek−1e , and φ ∼ Uw , (4.4)



14 Cesar B. Rocha, Gregory L. Wagner, and William R Young

Table 4. Description of parameters of the 2D turbulence simulations. The initial condition have
Rossby number Ro = Ueke/f0 ≈ 0.05, wave dispersivity } = f0λ

2ke/Ue ≈ 0.5 − 2, and wave
amplitude α = Ro(Uw/Ue)

2 ≈ 0.1.

Parameter Description Value

2πk−1
e Energy-containing scale Ld/10 ≈ 125 km

Ue Eddy velocity 5× 10−2 m s−1

Uw NIW speed 1× 10−1 m s−1

N0 Buoyancy frequency 5× 10−3 s−1

f0 Colioris frequency 10−4 s−1

2πm−1 NIW vertical wavelength 280− 560m
κe PV biharmonic diffusivity 5× 106 m4 s−1

νw NIW biharmonic viscosity 5× 106 m4 s−1

N Number of modes 1024
L Domain size 2π × 200 km

Table 5. The time-integrated budget of wave potential energy and QG kinetic energy of the
reference 2D turbulence solution with parameters in 4. The energy budgets close within 0.1 %.

Ṗ budget Fractional size (
∫
Ṗdt/∆P) K̇ budget Fractional size (

∫
K̇dt/∆P)

Γr 0.117 -Γr -0.108
Γa 0.907 -Γa -0.839
− − Ξr 0.009
− − Ξa 0.003
χφ -0.026 εψ -0.062

Res. 0.003 Res. 0.003

shows that there are two important dimensionless control parameters. The first is

α
def
=

Ueke
f0︸ ︷︷ ︸

def
=Ro

×
(
Uw
Ue

)2

, (4.5)

which scales the contribution of the wave terms in the potential vorticity (2.6). The
second dimensionless parameter is

} def
= η × ke

Ue
= Ro−1 × (λke)

2 , (4.6)

which scales wave dispersion against the effects of advection and refraction. Assuming
that the wave horizontal scale is k−1e , (λke)

2 is the wave Burger number, which is small
for near-inertial waves.

4.2. Solution with } = 1 and α = 0.1

Figure 5 shows snapshots of a solution with } = 1 and α = 0.1 and further parameters
in table 4. This turbulence solution shares qualitative aspects of the Lamb-Chaplygin
solution. Starting from a uniform wave field in (2.14), refraction quickly concentrates the
waves into anti-cyclones. Initially the action density A is uniform but by t × Ueke ≈ 1,
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Figure 5. Snapshots of the turbulence solution with parameters in table 4. Upper panels: PV
q. Middle panels: wave kinetic energy density |φ|2. Bottom panels: wave buoyancy, with scale
B = kemUwf0λ

2. These plots show (1/2)2 of the domain.

A varies on eddy scales by a factor of two with significant focussing of waves, indicated
by maxima of A, into anti-cyclones (compare middle and upper panels of figure 5).

Dispersion radiates waves from the vortices; advection enhances the gradients of back-
rotated velocity φ (see lower panels of figure 5, which depict wave buoyancy). By t ×
Ueke ≈ 10, A varies by a factor of five and the wave buoyancy is amplified by a factor
of two. The evolution of potential vorticity q is similar to that in the waveless problem:
like-sign vortices merge into bigger vortices. The big vortices keep straining the waves,
generating smaller scales in the wave field.

Figure 6a shows the inexorable increase in wave potential energy 〈P〉 and the cor-
responding decrease in balanced kinetic energy 〈K〉. In figure 6b quick wave refraction
results in an initial sharp generation of 〈P〉 at the expense of balanced kinetic energy
〈K〉. As in the Lamb-Chaplygin solution, the positive refractive conversion, Γr > 0, is
ephemeral: in figure 6b, Γr peaks at t × Ueke ≈ 2 and then decays rapidly, eventually
changing sign at t × Ueke ≈ 5. But a significant positive advective conversion, Γa > 0,
sustains stimulated generation so that 〈P〉 ultimately increases approximately linearly
with time.
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Figure 6. Diagnostics of the 2D turbulence solution with parameters presented in table 4. (a)
Energy change about initial condition. (b) Wave potential energy budget (3.12).

After 25 eddy-turnover time units, the balanced kinetic energy 〈K〉 has decayed by
about 14% from its initial value. Most of this loss is by stimulated generation of 〈P〉. As
in the Lamb-Chaplygin solution, advective conversion Γa accounts for most of the energy
change. Table 5 presents further details of the energy budget.

The solution illustrates interesting characteristics of stimulated generation. First, the
role of refraction is catalytic in that it generates the initial eddy-scale gradients in φ
that are then enhanced by advective straining; the advective conversion, Γa in (3.16),
ultimately accounts for most of the energy transfer from turbulence to waves. Second, the
roughly linear–in–time growth of wave potential energy 〈P〉 is very slow in comparison
with exponential increase of passive-scalar tracer gradients in turbulent velocity fields.
The relatively slow growth of 〈P〉 suggests that wave dispersion plays an important role in
slowing and perhaps opposing advective straining (see section 5 for further discussion of
dispersion and “wave escape”). To investigate whether these characteristics are general we
consider solutions with varying vertical wavelengths and therefore different dispersivities.

4.3. Varying dispersivity

Figure 7 shows snapshots of potential vorticity q and its constituents in a set of
solutions with varying the vertical wavelength 2πm−1 from 280 to 560 m, yielding
dispersivities ranging from 0.5 to 2. (All other parameters are fixed.) The potential
vorticity q shows more small-scale filamentation with decreasing dispersivity, but it
is otherwise similar across the three solutions. The partition into relative vorticity
4ψ and wave potential vorticity qw, however, depends significantly on dispersivity. In
particular, qw develops smaller scales and larger amplitudes with decreasing dispersivity.
As anticipated by the dipole example in figure 2, there is cancellation of small-scale
features in qw against those in ζ so that q is relatively smooth even in the solution with
weak dispersion } = 0.5.

The initial evolution of the uniform wave field is similar across dispersivities, with
refraction initially generating eddy-scale gradients of the waves—see figure 8. Refraction
produces a sharp initial increase of wave potential energy and decrease of balanced kinetic
energy, which is almost independent of dispersivity. Figure 8c shows that this initial
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Figure 7. Snapshots of PV q and its decomposition into relative vorticity ζ = 4ψ, and wave
potential vorticity qw. The snapshots were taken at t× Ueke = 25.

“refractive stage” yields a strongly negative wave-vorticity correlation r,

r
def
=

〈ζA′〉√
〈ζ2〉〈A′2〉

, (4.7)

where A′ def= (|φ|2 − |〈φ〉|2)/f0; in figure 8c the early negative r is nearly independent of
dispersivity. Because significant energy exchange takes place in the anti-cyclones due to
the initial wave concentration, a positive vorticity skewness ensues (figure 8d). Once the
eddy-scales are created, advection strains the waves and generates further wave potential
energy at the expense of balanced kinetic energy. It is in this stage that the dependence
on dispersivity is pronounced: weakly dispersive waves are strained further than strongly
dispersive waves. Thus the advective conversion becomes stronger with decreasing dis-
persivity (figure 8b). Advection and dispersion significantly reduces the wave-vorticity
correlation; the reduction in correlation increases as the dispersivity decreases (figure 8c).
For the weakest dispersivity considered, the wave-vorticity correlation becomes weakly
positive likely because of the early positive vorticity skewness.
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Figure 8. The energetics of 2D turbulence solutions with different dispersivities. (a) Energy
change about the initial condition. (b) The energy conversion terms in (3.12). (c) The correlation
between relative vorticity and wave kinetic energy. (d) The skewness of relative vorticity.
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Figure 9. Energy-preserving spectra of 2D turbulence solutions with different dispersivities.
The three panels show spectra of balanced kinetic energy K , wave action A, and wave potential
energy P. All solid lines correspond to spectra at t × Ueke = 25 and the dashed line in K is
the balanced kinetic energy spectrum at t×Ueke = 0. All spectra are normalized by their total
energy, i.e., the area under each curve is one.
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In all solutions reported above, the evolution of the balanced flow is similar to that of
waveless 2D turbulence: there is a transfer of balanced energy towards larger scales driven
by merger of like-signed vortices—see the left panel of figure 9. The main difference is
that balanced kinetic energy is constantly transformed into wave potential energy via
stimulated generation. The stimulated generation process is associated with a forward
transfer of wave action A from the infinite horizontal scale in the initial condition (2.14)
to the eddy scale; see the middle panel of figure 9. The wave potential energy density
P on the right panel of figure 9 develops significantly smaller scales than those of the
balanced kinetic energy K.

5. Wave escape

The expression for the energy conversion in (3.12) illuminates the physics of stim-
ulated generation: both convergence of wave action density into anti-cyclones (3.14)
and geostrophic straining of the wave field (3.16) are sources of wave potential energy
and sinks of balanced kinetic energy. But this characterization of stimulated generation
ignores the important role of wave dispersion—waves can propagate out of the vorticity
or straining regions, thereby reducing the correlations Γr and Γa required for stimulated
generation.

Wave dispersion is the only mechanism that upsets stimulated generation in the quasi-
inviscid solutions described in this paper. In all solutions, after an initial conversion due
to refraction, advective straining accounts for most of the energy conversion. Experience
with the passive-scalar problem suggests (incorrectly) that the wave potential energy
P should then increase exponentially with time as ∇φ is amplified by stirring (e.g.,
Young et al. 1982). But even in the weakly dispersive limit, the waves do not behave
as a passive scalar and stimulated generation is much less effective than suggested by
this “passive-scalar thinking.” This is because advective straining can only increase ∇φ
so much: the near-inertial generalized group velocity is η∇Θ (cf. section 3), where Θ
is the phase of the near-inertial back-rotated velocity φ = |φ|eiΘ. Geostrophic straining
enhances∇Θ thereby increasing the near-inertial group velocity so that the waves escape
the straining region. Thus, straining by a barotropic balanced flow results in near-inertial
“wave escape,” as opposed to the “wave capture” described by Bühler & McIntyre (2005).
Indeed, wave capture requires both lateral strain and vertical shear: the vertical-plane-
wave model has no vertical shear and therefore wave capture is inoperative; see Thomas
(2012) for further discussion of the importance of vertical shear to wave capture.

5.1. Strain flow

We are surprised by the successful resistance mounted by the waves to strain-driven
exponential amplification of∇φ and thus seek to illustrate wave escape with simple flows.
We first consider the straining flow ψ = −αxy. Ignoring dissipation for simplicity, the
wave equation (2.8) reduces to

φt + αxφx − αyφy − i
2η4φ = 0 , (5.1)

and the action equation is

At + α(xA)x − α(yA)y +∇·F = 0 . (5.2)

Without vorticity and dissipation, Ehrenfest’s theorem (3.11) reduces to

∂t [〈Fx〉 , 〈Fy〉] = [−α〈Fx〉 , +α〈Fy〉] , (5.3)
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Figure 10. The escape of a Gaussian near-inertial wave packet from the saddle of a strain
flow. The Gaussian decay scale is µ = ν. The waves are weakly dispersive: } = η/αµ2 ≈ 0.1.
Black contours show the streamfunction ψ = −αxy, and colors represent wave zonal velocity;
the colorbar limits are fixed. The black dot indicates the center of the packet and the gray line
tracks its trail.

with solution

[〈Fx〉 , 〈Fy〉] =
[
〈Fx〉0e−αt , 〈Fy〉0eαt

]
, (5.4)

where the subscript 0 denotes the initial condition. For a compact wave packet, with a
well-defined uniform group velocity cg, the action flux is

〈F〉 = cg〈A〉 . (5.5)

Because 〈A〉 is constant, (5.4) is thus also a solution for cg(t).

The position of the center of the packet is

xc(t)
def
= 〈xA〉/〈A〉 . (5.6)

Multiplying (5.2) by x, averaging, and using (5.4), yields

∂txc − αxc = cxg0e−αt , and ∂tyc + αyc = cyg0eαt , (5.7)

with solution

xc(t) = xc0 + cg0
sinhαt

α
. (5.8)

The trajectory of the packet is therefore a straight line following the initial group velocity
cg0. The wave packet is not deflected by the hyperbolic streamlines of the straining
flow and the packet escapes by accelerating exponentially with time along a straight-line
trajectory. This requires that the group velocity cg(t) adjusts in magnitude and direction
so as to keep the center of the packet on the straight and narrow.

The result in (5.8) is so remarkable that it is reassuring to obtain it without invoking
Ehrenfest’s theorem. We thus consider the specific example of a wave packet launched in
the strain field with the Gaussian initial condition

φ(x, y, 0) =
2π

µν
exp

[
− 1

2

(
x2

µ2
+
y2

ν2

)
+ i (px+ qy)

]
. (5.9)

If pµ � 1 and qν � 1 this is a wave packet with initial wavenumber (p, q) and initial
group velocity

cg0 = η (p, q) . (5.10)
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Figure 11. A comparison of passive-scalar and wave solutions (} ≈ 0.09) with same initial
conditions (the wave kinetic energy is equal to the passive-scalar variance) and the same
small-scale dissipation. (a) Initial condition of wave back-rotated zonal velocity and of the passive
scalar. (b) Wave back-rotated zonal velocity at t × Ueke = 10. (c) Passive-scalar concentration
at t× Ueke = 10. (d) Variance of wave velocity or passive-scalar variance. (e) Variance of wave
velocity gradient or passive scalar. In (d) and (e), the diagnostics are normalized by their initial
values.

The exact solution to (5.1), subject to the initial condition (5.9), is

φ =
2π√

(µ2 + iηf)(ν2 + iηg)
×

exp

[
− 1

2

x2e−2αt − 2iµ2pxe−αt + iηfµ2p2

µ2 + iηf
− 1

2

y2e2αt − 2iν2qyeαt + iηgν2q2

ν2 + iηg

]
, (5.11)

with

f
def
=

1− e−2αt

2α
and g

def
=

e2αt − 1

2α
. (5.12)

Figure 10 illustrates the solution (5.11). The strain flow tilts the packet to align it with
the x-axis. The flow then exponentially stretches the packet, which in turn escapes from
the saddle point. To calculate the trajectory of the packet we note that

|φ|2 =
(2π)2√

(µ4 + η2f2)(ν4 + η2g2)
exp

[
−µ

2 (xe−αt − ηfp)2

µ4 + η2f2
− ν2 (yeαt − ηgq)2

ν4 + η2g2

]
,

(5.13)
and we recover xc(t) in (5.8) as the center of the packet in (5.13).
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5.2. A flow with strain and vorticity

As a second example of wave escape, figure 11 shows a numerical solution for a wave
packet launched at the saddle point of a large-scale balanced flow with ψ = sinx+ sin y.
The small-time evolution of the packet is predicted by the strain-flow solution discussed
above. The top row of figure 11 shows that the behavior of the wave packet is qualitatively
different from that of a passive scalar in the same flow: the passive scalar is stretched
out along the separatrices while the wave packet escapes into the vortex centers. Thus
the passive scalar packet is strained and quickly diffused into oblivion. On the other
hand, the waves are strained just so much, resulting in acceleration and escape from the
straining region; the waves finally concentrate in the regions with non-zero vorticity, i.e.,
in the regions where the Okubo-Weiss criterion indicates no exponential stretching.

On the bottom row, figure 11d shows that while wave action ∝ |φ|2 is nearly conserved,
the analogous passive-scalar variance is strongly dissipated. Figure 11e shows that the
variance of the passive-scalar gradient at first increases exponentially due to straining
and then decays due to diffusion. On the other hand, the potential energy of the waves
∝ |∇φ|2 increases slowly and then oscillates around an equilibrium level. The wave-
escape phenomenology in the turbulence solutions of section 4 qualitatively resembles
that seen in this simple flow. In particular, the wave potential energy does not reach the
dissipative scale (figure 9c).

6. The Eulerian-mean viewpoint

In section 3 we developed conservation laws for A, P and K based on the Lagrangian-
mean streamfunction ψ and the backrotated velocity φ. Material conservation of PV is
central to the NIW-QG system and thus the Lagrangian-mean velocity, (−ψy, ψx), must
be a key field. But then K = |∇ψ|2/2 is not the kinetic energy of the Eulerian-mean
velocity and therefore Reynolds stress diagnostics do not directly indicate changes in K.
In fact Reynolds stresses have not been mentioned in section 3 and one might wonder
how these standard statistics are related to the NIW-QG energy conversions Γr and Γa?
In this section we identify the Eulerian-mean energy transfers in terms of NIW-QG fields.

6.1. Kinetic energy of the Lagrangian-mean and Eulerian-mean flows

Appendix A.2 shows that in the vertical-plane-wave model, the Stokes drift is horizon-
tally non-divergent, with streamfunction −A. Thus the Stokes velocity is

uS = −k̂ ×∇A , (6.1)

and the Eulerian-mean streamfunction is

ψE def
= ψ +A . (6.2)

To illustrate the important differences between Lagrangian-mean and Eulerian-mean
viewpoints, figure 12 shows a snapshot of the dipole example from section 2.3. This
snapshot was taken at t× Ueke = 10, just after the end of the refractive stage of energy
conversion, when waves are strongly concentrated in the anti-cyclone. While ψ is fairly
symmetric, the Eulerian-mean streamfunction ψE displays a stronger anti-cyclone. The
Stokes drift is concentrated in the negative ζ region and is anti-parallel to the Eulerian-
mean flow. Thus the asymmetry in ψE is compensated by a strong “Stokes cyclone,”
which is set up during the refractive stage and thus the Lagrangian-mean streamfunction
ψ is more nearly a symmetric dipole.
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Figure 12. Snapshot of the dipole Lagrangian-mean streamfunction and its decomposition into
Eulerian-mean and Stokes drift. The snapshots is at at t× Ueke = 10, just after the end of the
refractive stage. The spatial average of each field was removed for direct comparison.

Using the decomposition (6.2), the balanced kinetic energy K = |∇ψ|2/2 is

K = 1
2 |∇ψ

E|2︸ ︷︷ ︸
def
=KE

+ 1
2 |∇A|

2 −∇ψE · ∇A︸ ︷︷ ︸
def
=KS

. (6.3)

K does not diagonalize, i.e., the cross-term∇ψE ·∇A is non-zero, and the “Stokes kinetic
energy” KS is not sign definite.

The first goal here is to obtain an expressions for the time rate of change of KS and
KE . We begin with yet another A-F identity: using the definitions of A and F in (3.1)
and (3.6) yields

A∇·(k̂ ×F) = −F · k̂ ×∇A . (6.4)

The average of (6.4), combined with a standard vector identities, results in

〈A∇·(k̂ ×F)〉 = 〈F · k̂ ×∇A〉 = 0 . (6.5)

Equation (6.5) implies that the Stokes velocity uS is, on average, orthogonal to the action
flux F .

Forming 〈Aq〉, and combining the expression for qw in (3.9) with the identity (6.5),
yields

〈KS〉 = 〈Aq〉 . (6.6)

An expression for the rate of change of 〈KS〉 follows by combining the PV advection
equation (2.7) with the action conservation (3.5):

d〈KS〉
dt

= −ΓS + 〈ADq〉+ 〈qDA〉︸ ︷︷ ︸
def
= εS

, (6.7)

where

ΓS
def
= 〈q∇·F〉 . (6.8)

Finally we obtain the rate of change of the Eulerian-mean kinetic energy by combining
(6.7) with (3.13):

d〈KE〉
dt

= ΓS − Γr − Γa +Ξ + εK − εS . (6.9)
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Figure 13. Diagnostics of the 2D turbulence solution with parameters presented in table 4. (a)
Kinetic energy change about initial condition. (b) Refractive and advective conversion terms,
and shear production.

6.2. Reynolds stresses and buoyancy fluxes

Within the Eulerian framework the horizontal velocity is represented as

u = uE + ũ , (6.10)

where superscript E denotes the Eulerian-mean and tilde denotes the near-inertial wave
velocity. With this decomposition, the Eulerian-mean velocity satisfies

uEt + uE · ∇uE + (ũ · ∇ũ)E + k̂ × f0uE +∇pE = 0 . (6.11)

(Dissipation is neglected in the following discussion.) As in the vertical plane–wave model,
we confine attention to mean velocities independent of z, so that uE = (−ψEy , ψEx ) where

ψE is the Eulerian-mean streamfunction introduced in (6.2). Forming 〈uE · (6.11)〉 yields

d〈KE〉
dt

=
〈
(ṽ2 − ũ2)E ψExy + (ũṽ)E (ψExx − ψEyy)

〉︸ ︷︷ ︸
def
=RSP

, (6.12)

Above RSP is the Reynolds shear production of Eulerian–mean kinetic energy. Compar-
ing (6.12) with (6.9), and ignoring the dissipative contributions, we see that

RSP = ΓS − Γr − Γa . (6.13)

We can also consider the source of near-inertial potential energy by starting with the
wave buoyancy equation

b̃t + uE · ∇b̃+∇·
[
ũb̃− (ũb̃)E

]
+ w̃N2 = 0 , (6.14)

where we have confined attention to the vertical-plane-wave model so that bE = 0.
Multiplying (6.14) by b̃, taking the Eulerian average, and then the domain average 〈〉,
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we have

d〈P〉
dt

= −
〈

(w̃b̃)E
〉

︸ ︷︷ ︸
def
=BF

, (6.15)

= Γr + Γa . (6.16)

Above P = (b̃2)E/2N2 is the wave potential energy and BF is the buoyancy flux; we
have used (3.12) to relate Γr and Γa to the Eulerian-mean buoyancy flux.

Finally, from balanced energy equation (3.13) and K = KE +KS , we deduce that

d〈KS〉
dt

= BF −RSP , (6.17)

= −ΓS . (6.18)

Figure 13a shows the decomposition of 〈K〉 into 〈KE〉 and 〈KS〉 for the main 2D
turbulence solution discussed in section 4. In the initial condition there is no Stokes
flow and K = KE . Then in the refractive stage, the kinetic energy of the Eulerian-mean
flow 〈KE〉 increases, while kinetic energy of the Lagrangian-mean flow 〈K〉 decreases; the
“Stokes energy”, KS = K−KE , is initially zero and becomes negative, due to a positive
ψE-A correlation (cf. figure 12). As illustrated in figure 12, the refractive stage, which
creates the strong spatial modulations in action density A, can also be viewed as the
setting-up the Stokes velocity in (6.1).

In the refractive stage, the advective conversion Γa is small and ΓS ≈ 2Γr. Hence the
shear production is due to the refractive conversion, RSP ≈ Γr (see figure 13b). At later
times, during the advective stage, ΓS − Γr is small, and therefore RSP ≈ BF ≈ −Γa.
At this stage, ∂t〈K〉 ≈ ∂t〈KE〉, and the connection between the Eulerian-mean and
Lagrangian-mean viewpoints is straightforward: the kinetic energy extracted from the
Eulerian-mean flow via Reynolds shear production approximately matches the creation
of wave potential energy through buoyancy fluxes. In general, however, the connection is
convoluted, involving the rate of change of the “Stokes energy” in (6.17).

7. Discussion and conclusions

7.1. Absence of a direct cascade of wave energy

The solutions reported here introduce the waves at t = 0 in (2.14) with infinite spatial
scale. Wave refraction, iφζ/2 in (2.8), immediately transfers wave energy to the smaller
scales of the balanced relative vorticity ζ. This giant leap across wavenumbers is not a
direct cascade of wave energy in the sense of Kolmogorov. And because of wave escape,
the wave energy that is so efficiently transferred to eddy scales by refraction does not
undergo a turbulence-driven direct cascade to the small length scales at which the wave
dissipation in (2.9) is effective. This conclusion hinges on the assumption of a barotropic
balanced flow and fixed vertical wavenumber. Similar to the vertical-plane-wave model,
shallow-water models lack wave capture and an efficient direct cascade of wave energy
(e.g., McIntyre 2009). In less idealized models with balanced baroclinic shear, the vertical
wavenumber can increase, and a direct cascade, perhaps resulting in wave capture, can
ensue; stimulated generation might then be much stronger than in the vertical-plane-wave
model considered here.
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7.2. Regimes of wave-modified turbulence

Geostrophic straining accounts for most of the stimulated generation of wave energy
in the examples considered in this paper. But refraction plays a fundamental role in
these solutions with the uniform initial wave velocity in (2.14), because refraction creates
the initial gradients of wave velocity that are then enhanced by geostrophic straining.
We experimented by changing the initial condition of φ to an eddy-scale plane wave
and repeated all the 2D turbulence solutions; the different initial condition significantly
suppresses the initial refraction stage, but otherwise yields long-term solutions that
are qualitatively similar to the solutions discussed above. Thus, to the extent that the
uniform-wave initial condition (2.14) idealizes the generation of large-scale upper-ocean
inertial oscillations by storms (e.g., Moehlis & Llewellyn Smith 2001; Danioux et al.
2015), the initial refraction is a loss of lateral coherence, or a type of inertial pumping
(Young & Ben Jelloul 1997; Klein et al. 2004), which is accompanied by an extraction of
energy from the balanced flow by the waves.

Although 10-20% of the balanced kinetic energy is converted into wave potential energy,
and despite the wave breakage of the symmetry between cyclones and anti-cyclones, the
wave-modified turbulence in section 4 remarkably resembles waveless two-dimensional
turbulence (e.g., McWilliams 1984): we still observe robust vortices and an increase in
vortex length scale due to merger of like-signed vortices. Figure 7 shows small changes in
the potential vorticity q and much larger changes in the wave PV qw induced by changing
the dispersivity. In this sense, the turbulent evolution is insensitive to wave modification.

To see significant wave modification of the turbulence we increased the amplitude of the
initial wave in (2.14) so that Uw = 6Ue (in section 4, Uw = 2Ue). With this level of wave
energy the wave-modified 2D turbulence differs qualitatively from the waveless variety
(not shown). The potential vorticity develops highly filamentary structures with little
vortex formation; this inhibition of vortex formation is stronger in the weakly dispersive
limit.

7.3. Energy transfers can be bi-directional in non-turbulent balanced flows

In all solutions considered in sections 2 and 4, the energy transfer is always from the
balanced flow into the waves. This positive energy conversion, Γr + Γa > 0, remains
true for very long turbulence simulations (not shown), because the refractive conversion
is small at large time and turbulent stirring always increases lateral wave gradients:
Γr + Γa ≈ Γa > 0.

But the energy transfers can be bi-directional for non-turbulent flows. To illustrate this
process, we consider a solution with initially uniform wave and ψ(x, 0) = sinx + sin y.
This non-turbulent balanced flow consists of two vortices of opposite signs; there can be
no inverse cascade from this initial condition because ψ(x, 0) is already at the domain
scale. Starting from the initial uniform wave, the refractive conversion generates wave
potential energy P at the expense of balanced kinetic energy K (figure 14). After this
initial refractive stage, however, P and K oscillate about equilibrium levels and there
are quasi-periodic energy transfers back and forth between P and K. In this solution,
the refractive conversion Γr accounts for most of the quasi-periodic exchanges between
K and P.

7.4. The correlation of wave amplitude with relative vorticity

A secondary result is the strong time-dependence of the correlation r, defined in
(4.7), between incoherent waves and the relative vorticity; r measures the concentration
of waves into cyclones or anti-cylones (Danioux et al. 2015). Refraction concentrates
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Figure 14. Diagnostics of an illustrative solution with initially uniform wave and
ψ(t = 0) = sinx + sin y, with α = 0.1 and } = 2. (a) Energy difference about initial condition.
(b) Wave potential energy budget.

waves into anti-cylones and expels them from cyclones, thereby generating an initial
strong negative r (see figure 8c). And Ehrenfest’s theorem provides perhaps the simplest
explanation for this concentration—see (3.17). As conjectured by Danioux et al. (2015),
the subsequent return of r towards zero (and even to positive values in the case } = 0.5) is
partially due to the unsteady geostrophic advection. The NIW-QG coupling compounds
the unsteady advection: the dramatic initial concentration of waves into anti-cyclones
weakens those vortices, with ensuing development of positive skewness of relative vorticity
(see figure 8d); the vorticity skewness increases with decreasing dispersivity because
weakly dispersive waves extract more energy from the balanced flow (see figure 8).

7.5. Reconciling action conservation with RSP of wave kinetic energy

A main difficulty in making a connection between the NIW-QG model and earlier
studies, such as those in table 1, is that the theory uses the Lagrangian-mean geostrophic
flow as a primary variable. Previous studies generally employ an Eulerian wave-mean
decomposition. Taylor & Straub (2016), for example, use frequency filtering to separate
low frequency motions (Eulerian-mean) from high-frequency flow (dominated by near-
inertial waves). Taylor & Straub find energy exchange between low-frequency (eddy)
kinetic energy and high frequency (near-inertial) kinetic energy resulting from both
vertical and horizontal Reynolds stresses; Taylor & Straub refer to this energy transfer
as the “advective sink”, meaning a sink of low-frequency, Eulerian-mean kinetic energy.
The Reynolds shear production RSP in (6.12) is analogous to the horizontal part of the
advective sink.

The Reynolds stresses diagnostics of prior studies in table 1 might seem incompatible
with fundamental aspects of the NIW-QG system. For example, the wave action A in
(3.1) differs from the wave kinetic energy |φ|2/2 only by the constant factor f0. Thus
NIW-QG action conservation seems inconsistent with Reynolds stress transfer of kinetic
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energy from eddies to waves. But this impression is incorrect: Reynolds stresses aren’t
inconsistent with conservation of A, nor with stimulated generation.

To understand this, note that conservation of A in (3.10) is a statement about the
leading order wave velocities encoded in φ; the balanced kinetic energy K also involves
higher order wave kinetic energy in the form of the “Stokes kinetic energy” KS : see
(6.3) and the surrounding discussion. A main point from section 6.2 is that the energy
transferred from the Eulerian-mean velocity by RSP is accounted for by KS (rather than
the leading-order wave kinetic energy f0A).

At first glance it might seem that because stimulated generation results in an increase
in wave potential energy P, it must necessarily involve a transfer from eddy potential
energy. The vertical-plane-wave model is a counterexample: the eddies are barotropic and
there is therefore no eddy potential energy to transfer. Indeed, if the eddies are barotropic,
then RSP is the only pathway between the Eulerian-mean kinetic energy KE and wave
energy. This rather obvious fact is deeply hidden by the Lagrangian-mean average: the
RSP transfer out of KE passes first through KS on the way to P. The intermediate
passage through KS is an inevitable aspect of the Lagrangian-mean formulation of the
NIW-QG system. All of these transfers can be diagnosed using Γa, Γr and ΓS and (6.13)
relates Reynolds shear production to the three Γ ’s.

A full investigation of NIW-QG energetics, including diagnosis of Γr, Γa and ΓS
in solutions of the Boussinesq equations, is beyond the scope of this article. But we
emphasize a crucial simplifying feature of the NIW-QG approximation: there are no
important Stokes corrections to pressure and buoyancy, and therefore, to leading order,
the Lagrangian-mean velocity is equal to the balanced velocity based on an Eulerian-mean
pressure field. In principle, this is a straightforward way of diagnosing Lagrangian-mean
velocities from numerical solutions of the Boussinesq equations.

7.6. Final remarks

There are many caveats to the application of our results to the post-storm oceano-
graphic problem. Notably, the lack of geostrophic vertical shear suppresses important
mechanisms of vertical refraction and straining, which introduce interesting modifications
of the near-inertial wave physics (e.g., Thomas 2012) and can produce strong energy
extraction by near-inertial waves (Shakespeare & Hogg 2017). And our focus on quasi-
inviscid initial value problems downplays the role of dissipation, but in forced-dissipative
solutions, wave dissipation likely controls the strength of stimulated generation. Finally,
better understanding the connection between numerical modeling studies (e.g. Taylor &
Straub 2016) and the NIW-QG theory (XV; Wagner & Young 2016) deserves further
investigation. We hope to explore these topics in future work.

We thank three anonymous referees for constructive criticism and suggestions.
This study was supported by the National Aeronautics and Space Administration
(NNX16AO5OH) and the National Science Foundation (OCE1357047).

Appendix A. Details of the NIW-QG model

A.1. The NIW-QG model

Using multiscale asymptotic theory, Wagner & Young (2016) derive a model for the
coupled evolution of QG balanced flow, near-inertial waves and their second harmonic.
Assuming that the second harmonic is zero (B = 0), the Wagner & Young (2016) coupled
model recovers the XV model in the limit where the waves have vertical scales much
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smaller than the balanced flow. In Wagner & Young (2016), the PV is

q = (4+ L)ψ + βy + 1
2f0

[
4 1

2 |LA|
2 + iJ(LA?, LA)

]
, (A 1)

where 4 def
= ∂2x + ∂2y and L

def
= ∂z(f0/N)2∂z, and LA is the back-rotated near-inertial

velocity; the leading-order wave plus balanced flow velocity is

u+ iv = LAe−if0t − ψy + iψx , (A 2)

where ψ is the streamfunction of the Lagrangian-mean (geostrophically balanced) flow.
The PV is materially conserved,

qt + J(ψ, q) = 0 , (A 3)

and the wave back-rotated velocity satisfies the YBJ equation,

LAt + i
2f04A+ J(ψ,LA) + iLA( 1

24ψ + βy) = 0 . (A 4)

The special family of solutions with a barotropic balanced flow ψ = ψ(x, y, t), f -plane
(β = 0), uniform background buoyancy frequency N = N0, and LA = eimz φ(x, y) wave
velocity yields the vertical-plane-wave model in (2.7)-(2.8). The plane wave model is a
solution of both XV and Wagner & Young (2016) equations because the barotropic flow
assumption yields an infinite vertical-scale separation between waves and balanced flow.

A.2. Stokes drift

The horizontal component the Stokes drift of near-inertial waves is (Wagner & Young
2016):

uS + ivS = i
f0

(Mzz∂
?M? −M?

z ∂
?Mz) , (A 5)

wS = i
f0

(M?
z ∂∂

?M − ∂Mz∂
?M) + cc . (A 6)

where M = (f0/N)2Az and Mz = LA, and we recall ∂ = (∂x − i∂y)/2. In the vertical-
plane-wave model, the back-rotated velocity is Mz = φeimz, and the horizontal Stokes
drift above simplifies to

(uS , vS) = (Ay,−Ax) , (A 7)

where A = |φ|2/2f0 is the action density. Thus the Stokes drift of the vertical-plane-wave
model is horizontally non-divergent, with streamfunction −A. The vertical component
of the Stokes drift reduces to

wS = 1
f0m

[∂(φ∂?φ?) + ∂?(φ?∂φ)]

= 1
m

[
4 1

2A− η
−1∇·(k̂ ×F)

]
, (A 8)

where we used (3.8) and the identities

4 = 4∂∂? and J(f, g) = 2i(∂?f∂g − ∂f∂?g) . (A 9)

An important property of the NIW-QG model is that there is no Lagrangian-mean
vertical velocity:

wE + wS = 0 . (A 10)

Hence, using (A 8) and ψ = ψE−A, we obtain an alternative expression for the potential
vorticity (2.6) in terms of Eulerian-mean fields:

q = 4ψE +mwE . (A 11)
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Appendix B. Quadratic conservation laws

B.1. Ehrenfest’s theorem

To obtain (3.11) we begin by noting that with F defined in (3.6)

∂tF = i
2λ

2 (φt∇φ? − φ?t∇φ) + i
4λ

2∇ (φφ?t − φ?φt) . (B 1)

Multiplying the wave equation by i∇φ?, adding to the complex conjugate, and using
identities such as

∇φ? J(ψ, φ)−∇φJ(ψ, φ?) = J(φ?, φ)∇ψ , (B 2)

one eventually finds

∂tF− i
4λ

2∇(φφ?t − φ? φt) + 1
4λ

2η
(
4φ∇φ? +4φ?∇φ

)
=

−∇ψ∇·
(
k̂ ×F

)
+ η 1

2ζ∇A+ i
2λ

2 (Dφ∇φ? −Dφ?∇φ) . (B 3)

Taking the domain average, noting that the second and third terms on the left have zero
average, and using the identity

〈∇ψ∇·(k̂ ×F)〉 = 〈(F ·∇)k̂ ×∇ψ〉 − 〈k̂ × (ζF)〉 , (B 4)

we obtain (3.11) with the dissipative term

εF
def
= i

2λ
2
〈
Dφ∇φ? −D?

φ∇φ
〉
. (B 5)

B.2. Wave potential energy

To obtain the wave potential energy equation (3.12) we take the dot product of ∇φ?
with gradient of the wave equation (2.8) and add the complex conjugate; the calculation
is best done using index notation. The final result is

Pt +∇·
[
ugP + 1

2ζF + λ2

4
i
2η
(
(∇φ · ∇)∇φ? − (∇φ? · ∇)∇φ

)]
= 1

2ζ∇·F −
λ2

2 φ,kσklφ
?
,l + λ2

4 (∇φ · ∇Dφ? +∇φ · ∇Dφ?) , (B 6)

where ug def
= k̂ ×∇ψ is the geostrophic velocity and

σkl
def
= 1

2 (ugk,l + ugl ,k) (B 7)

is the geostrophic strain tensor. The local equation (B 6) integrates to (3.12), with the
dissipative term

εP = λ2

4 〈∇φ · ∇Dφ? +∇φ? · ∇Dφ〉 = −λ
2

4 〈4φ
?Dφ +4φDφ?〉 . (B 8)

B.3. Balanced kinetic energy

To obtain the balanced kinetic energy equation we first multiply the PV equation (2.7)
by −ψ:

Kt +∇·[−ψ (∇ψt + ugq)] = ψqwt − ψDq . (B 9)

To attack ψqwt on the right, we use the expression for qw in (3.9). Thus

ψqwt =∇· 12
[
ψ
(
∇At + 2

η k̂ ×F t
)
−∇ψAt

]
︸ ︷︷ ︸

def
=−H1

+ 1
2ζAt + η−1ug ·F t . (B 10)
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Taking the dot product of (B 3) with ug we have

ug ·F t =∇·
{
ug
[
i
2λ

2 (φφ?t − φ?φt) + 1
4ηλ

2|∇φ|2
]
− 1

4ηλ
2 [∇φug ·∇φ? +∇φ?ug ·∇φ]

}︸ ︷︷ ︸
def
=−ηH2

+ η 1
2ζJ(ψ,A) + 1

2ηλ
2φ,kσklφ

?
,l + ug · i2λ

2 (Dφ∇φ? −Dφ?∇φ) . (B 11)

Thus

∂tK+∇·[−ψ (∇ψt + ugq) +H1 +H2] = − 1
2ζ∇·F + 1

2λ
2φ,kσklφ

?
,l + ξ − ψDq , (B 12)

where

ξ = 1
2f
−1
0 (φ?Dφ + φDφ?) 1

2ζ + f−10 ug · i2 (Dφ∇φ? −Dφ?∇φ) (B 13)

is the contribution of wave dissipation to the local balanced kinetic energy budget.
Interestingly, the first term on the right of (B 13) reveals that the dissipation of wave
action in anti-cyclones is a source of balanced kinetic energy. The second term on
the right of (B 13) shows that the alignment of the “action-flux dissipation vector”
i(Dφ∇φ? − Dφ?∇φ), with the geostrophic velocity is also a source of balanced kinetic
energy. The local equation (B 12) integrates to the balanced kinetic energy equation
(3.13) with the dissipative terms

Ξ
def
= 〈ξ〉 and εK = −〈ψDq〉 . (B 14)

B.4. Specific expressions with biharmonic dissipation

The dissipative terms in (2.7) and (2.8) add small dissipation to the energy equations
in section 3. The wave kinetic energy dissipation added to (3.1) is

εK = −νw〈|4φ|2〉 . (B 15)

The dissipation of wave potential energy in (3.12) is

εP = − 1
2λ

2νw〈|∇4φ|2〉 . (B 16)

Similarly, the balanced kinetic energy dissipation in (3.13) is

εK = κe〈ψ42q〉 = κe〈q42ψ〉 . (B 17)

The wave dissipation contribution to the balanced kinetic energy budget is

Ξ = 1
2νwf

−1
0

〈
1
2ζ
(
φ?42φ+ φ42φ?

)〉
+νwf

−1
0

〈
i
2ψ
[
J(φ?,42φ)− J(φ,42φ?)

]〉
. (B 18)

In all solutions of initial value problems reported in this paper, the dissipative terms
(B 15), (B 16), (B 17), and (B 13) account for less—typically much less—than 10% of the
energy tendencies.
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