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Mixing by microorganisms in stratified fluids

by Gregory L. Wagner1,2, William R. Young3, and Eric Lauga4

ABSTRACT
We examine the vertical mixing induced by the swimming of microorganisms at low Reynolds

and Péclet numbers in a stably stratified ocean, and show that the global contribution of oceanic
microswimmers to vertical mixing is negligible. We propose two approaches to estimating the mixing
efficiency, η, or the ratio of the rate of potential energy creation to the total rate-of-working on
the ocean by microswimmers. The first is based on scaling arguments and estimates η in terms of
the ratio between the typical organism size, a, and an intrinsic length scale for the stratified flow,

� = (
νκ/N2)1/4

, where ν is the kinematic viscosity, κ the diffusivity, and N the buoyancy frequency.
In particular, for small organisms in the relevant oceanic limit, a/� � 1, we predict the scaling
η ∼ (a/�)3. The second estimate of η is formed by solving the full coupled flow-stratification problem
by modeling the swimmer as a regularized force dipole, and computing the efficiency numerically.
Our computational results, which are examined for all ratios a/�, validate the scaling arguments in
the limit a/� � 1 and further predict η ≈ 1.2 (a/�)3 for vertical swimming and η ≈ 0.15 (a/�)3 for
horizontal swimming. These results, relevant for any stratified fluid rich in biological activity, imply
that the mixing efficiency of swimming microorganisms in the ocean is at very most 8% and is likely
smaller by at least two orders of magnitude.

1. Introduction

Vertical mixing, or the vertical transport of convected quantities like temperature and salt,
is of fundamental importance to general circulation, climate, and life in the ocean (Munk,
1966). It is therefore essential to identify the mechanisms which drive vertical mixing in
order to predict, for example, the consequences of changed environmental and climactic
conditions on ocean circulation and ecosystems (Wunsch and Ferrari, 2004). Vertical mixing
in the ocean can be assessed either by an effective or “eddy” diffusivity of convected
quantities, or by the mixing efficiency of a forcing process such as tidal forcing, wind stress
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or, as we focus on in this paper, the swimming of organisms. The mixing efficiency, η, of
a process in a stably stratified fluid like the ocean is defined as the ratio between the rate-
of-creation of gravitational potential energy and the total rate-of-working on the fluid, the
rest being turned into heat by viscous dissipation. Non-zero values for η are possible only
in a stably stratified fluid: if the fluid is unstratified then in statistically steady situations
all of the external work is dissipated by viscous stresses. It is a fundamental insight of
Munk (1966) and Munk and Wunsch (1998) that the strong stable stratification of the ocean
implies vertical mixing is limited by the power supply, and that top-down energy budgets
strongly constrain eddy diffusivities. The mixing efficiency is a fundamental ingredient in
these arguments. For example, Osborn’s (1980) inequality, Kρ < 0.2ε/N2, for effective or
eddy diffusivity Kρ, buoyancy frequency N , and rate of viscous dissipation ε, corresponds
to a value η = 1/6.

One vertical mixing mechanism receiving recent attention is the swimming of organisms.
The geophysical significance of pelagic bioturbation can be argued using either energy
production and transfer in the ocean biosphere or oxygen consumption; both arguments
lead to an estimate of about 1 terawatt (TW) of total mechanical energy transfer to the
deep ocean by swimming organisms (Dewar et al., 2006). Bolstering this conjecture are
predictions (Huntley and Zhou, 2004) and observations (Kunze et al., 2006; Gregg and
Horne, 2009) which find that kinetic energy dissipation within aggregations of swimmers
can reach 10−6 to 10−5 W kg−1, much greater than the typical deep ocean rates of 10−9 to
10−8 W kg−1. But despite these significant levels of dissipation, scaling arguments (Visser,
2007; Kunze, 2011) and a small number of observations (Gregg and Horne, 2009) suggest
that the characteristic lengths of biogenic eddies are too small for mixing efficiencies to be
significant, and that most of the energy is therefore dissipated by viscous stress rather than
stored in gravitational potential energy. In other words, η is too small for biogenic mixing to
matter. Nevertheless, it is possible that (a) energy transfer in aggregations may take place at
scales larger than that of an individual swimmer, (b) non-turbulent transport mechanisms are
important, and (c) mixing efficiency depends on the direction of swimming: in particular
one would expect intuitively that vertical swimming produces the largest η (Gregg and
Horne, 2009; Dabiri, 2010).

In this work, we consider the potential for mixing by a previously ignored source: microor-
ganisms swimming at low Reynolds numbers, or Reynolds numbers that are much less
than one. This class of swimmers includes bacteria and small planktonic organisms, and
excludes larger zooplankton and copepods which swim with Reynolds numbers close to
one or greater. Despite their small size, it seems reasonable to consider the contribution of
microorganisms to ocean mixing due to their great numbers and the fact that they constitute
the bulk of biomass in the ocean (Stocker and Seymour, 2012). In the deep ocean (where
their impact on vertical diffusivity might be most important) Whitman et al. (1998) estimate
their average concentration at 50,000 individuals per cm3; in the upper 200 m of the ocean
this number is greater by an order of magnitude at 5×105 cells cm−3. Their energy content
is also large: using an approximate average Oxygen Utilization Rate (OUR) along with
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the physics of respiration, the total metabolic rate of bacteria has been estimated at 6 TW
in the deep ocean (Dewar et al., 2006). Furthermore, there is evidence that the ability to
swim is widespread among bacteria: though the fraction of bacteria that swim may range
from 5% to 70% and is subject to large natural variability, the swimming fraction may be
as high as 80% in the presence of enhanced nutrient concentration (Stocker and Seymour,
2012).

Mixing by organisms in the low Reynolds number has been studied extensively both
theoretically (Lin et al., 2011; Kunze, 2011) and experimentally (Wu and Libchaber, 2000;
Leptos et al., 2009), with focus on the effective diffusivity induced in suspensions of
microswimmers. In this paper we provide a complementary approach and quantify mix-
ing by microorganisms through their mixing efficiency in the low Reynolds number (Re),
low Péclet number limit (Pe), which is the relevant limit for the convection of temperature
or salt by bacteria. We first use scaling arguments to estimate the efficiency as a func-
tion of the typical ratio between the microorganism size and the intrinsic length scale in
the stratified fluid. We then solve the full coupled flow-stratification problem by model-
ing the microorganism as a regularized force dipole, and evaluate the mixing efficiency
numerically. These results validate our scaling approach and demonstrate that the mixing
efficiency of a population of microorganisms can reach 8% for microorganisms which are
of similar size as the stratification length scale, but is on the order of 0.01% for microor-
ganisms and stratification levels relevant to the ocean, and thus negligible. This conclusion
confirms that Dewar et al. (2006) were correct in excluding bacteria from their assessment
of the total contribution of swimming organisms to the mechanical energy budget of the
ocean. Thus the major open question of biogenic mixing is the mixing efficiency of larger
swimmers.

Our paper is organized as follows. In Section 2 we derive the governing equations for
fluid motion in the low Reynolds number, low Péclet number limit and introduce our model
for a swimmer in this regime. In Section 3 we derive the mechanical energy equation and
define the mixing efficiency η as the ratio between the creation of gravitational potential
energy and the rate-of-working on the fluid. In Section 4 we develop a scaling argument for
mixing efficiency in low Reynolds and Péclet number flows which applies both to settling
particles and swimming microorganisms which are much smaller than the stratification
length scale. In Section 5 we present the results for mixing efficiency as estimated by our
model, and discuss our findings in Section 6. In Appendix A we present scaling arguments
for the mixing efficiency of settling particles and microorganisms which are much larger
than the stratification length scale. In Appendix B we give the the integrals quantifying
the rate of mechanical energy transfer to the fluid and to gravitational potential energy. In
Appendix C we outline the averaging procedure used to estimate the mixing efficiency within
a dilute ensemble of swimmers with uniformly distributed random orientations. Finally in
Appendix D we discuss the asymptotic evaluation of the mechanical energy integrals in the
two limiting cases where the microorganism is either much smaller or much larger than the
intrinsic stratification length scale.
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2. Governing equations for stratified locomotion by microorganisms

In order to quantify the mixing of stratified fluids by swimming microorganisms we first
derive a simple system of equations which models the action of the microorganism on the
fluid as a force density, f , spatially distributed in the fluid (but with no net force). Of critical
importance to this derivation is the Reynolds number (denoted Re), or the ratio between iner-
tial and viscous forces, and the Péclet number (denoted Pe), or the ratio between advection
and diffusion in the transport of either temperature or salt. For example, the marine bac-
terium Pseudoalteromonas haloplanktis has a size on the order of a ≈ 1 μm and swims
at speeds around U = 80 μs−1, which implies that Re = Ua/ν ≈ 8 × 10−5 (Stocker and
Seymour, 2012). If P. haloplanktis is reasonably representative of deep sea marine bacte-
ria, then because Petemp ≈ 7 Re for temperature stratification and Pesalt ≈ 700 Re for salt
stratification, the locomotion of most marine bacteria is associated with both low Re and
low Pe.

a. Dynamics of a forced stratified fluid

To begin we write the the fluid density, ρ, as the sum of three contributions: a reference
density, ρ0, a background density gradient, and perturbations from this background density
gradient expressed in terms of the buoyancy, b, representing the acceleration imparted to
fluid elements due to this deviation,

ρ = ρ0
[
1 − g−1 (

N2z + b
)]

, (1)

where g is gravitational acceleration, N = √− (g/ρ0) ∂ρ/∂z is the buoyancy frequency,
and the z-coordinate is aligned with gravity. If we assume that the background gradient and
perturbation introduce only small deviations from the reference density ρ0, we may make
the Boussinesq approximation and write the Navier-Stokes equations in the form

∇ · u = 0, (2)

ρ0

(
∂u

∂t
+ u · ∇u

)
= −∇p + ρ0b ẑ + μ∇2u + f , (3)

where u = {u, v, w} is the velocity field in the fluid, p the disturbance pressure, ẑ is a unit
vector in the vertical z-direction, μ the dynamic viscosity of the fluid, and f (x) is a body
force density (with dimensions of force per unit volume) used to model the flow disturbance
induced in the fluid by the microswimmer.

We assume that the fluid density is determined by a single stratifying agent like salt or
temperature through a linear equation of state. The distribution of density is then governed
by an advection-diffusion equation which can be expressed in terms of the buoyancy b as

∂b

∂t
+ u · ∇b + wN2 = κ∇2b , (4)
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where κ is the molecular diffusivity of the stratifying agent and the term wN2 arises from
advection of the background density gradient by vertical fluid motion.

b. Modeling swimmers as a regularized force dipole

Various modeling approaches can approximate the flow induced by a swimming microor-
ganism (Brennen and Winet, 1977; Lauga and Powers, 2009). The most detailed mod-
els require realistic geometry and a deformable boundary. A simpler possibility is the
“squirmer” proposed by Lighthill, which models a swimming microorganism as a spherical
body with a tangential velocity distribution imposed on its surface (Lighthill, 1952; Blake,
1971). An even more idealized model is the representation of the microswimmer by a dipo-
lar force singularity. For unstratified Stokes flow, whose governing equations are linear, the
properties of solutions forced by singularities—the Green’s functions of the Stokes equa-
tion and its derivatives—are well known (Chwang and Wu, 1975; Kim and Karrila, 2005).
The velocity distribution of a force dipole singularity, representing the simultaneous and
opposite action of the propelling flagella and the drag of the microorganism, has been shown
to correspond well to the flow field generated by a single bacterium (Drescher et al., 2011).
Models where swimmers are approximated as force-dipoles have been successful in repro-
ducing some of the behaviors and characteristics peculiar to self-propelled microorganisms
(Lauga and Powers, 2009).

However, modeling a swimmer as a force-dipole leads to a mathematical singularity and
infinite viscous dissipation. This unphysical result indicates that information about the size
of the microorganism is essential to any attempt at estimating the mixing efficiency. In this
work we take inspiration from the singularity model but smooth or “regularize” the singu-
larity (Cortez, 2001). Specifically, we replace the δ-function in the usual Green’s function
by a Gaussian. This distributes the total forcing over a finite region of fluid, which we
identify with the characteristic size, a, of the microorganism. Such regularized singularities
have long been used to obtain efficient solution of the boundary integral formulation of the
Stokes equations (Cortez et al., 2005).

The regularized point force, or regularized “Stratlet” in the context of stratified fluids
(List, 1971; Ardekani and Stocker, 2010), corresponds to a force density given by

f reg. Stratlet = e−r2/2a2(√
2πa

)3 F, (5)

where r = |x| is the distance to the singularity and the constant vector F indicates the
direction and magnitude of the total force acting on the fluid. The regularization is such that
the forcing f limits to a delta function as a → 0 and the corresponding solution limits to
the Green’s function. Here we use a convenient Gaussian form for the “cut-off” function,
though any function which limits to a delta function will work (Cortez, 2001).
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The regularized dipole is then derived from the regularized Stratlet solution,

f reg. dipole = −β · ∇f reg. Stratlet = −Fβ · ∇ e−r2/2a2(√
2πa

)3 , (6)

where β, with dimensions of length, is the displacement between the two constituent point
forces in the dipole. For an organism, these two point forces correspond to the equal and
opposite forces exerted by the organism body on the fluid and by the action of the flagella on
the fluid, so that the total force is zero. As such β is always either parallel or anti-parallel to
F and its magnitude |β| roughly corresponds to the size of the organism (Lauga and Powers,
2009). We define the total magnitude of the dipole to be D = |β||F|, which has dimensions
of force × length.

c. Non-dimensionalization

We proceed with the derivation of governing equations by scaling the equations and ana-
lyzing the relative magnitude of each terms. A primary external parameter is the magnitude
of the force F = |F|, appearing in the dipole. For bacterium, the typical order of magnitude
of the propulsive force of a flagellum is F ∼ 10−12 N (Drescher et al., 2011). We introduce
a characteristic length scale, L, that may be thought of as the size of the microswimmer,
denoted by a in (5) and (6), or alternately as a length scale for induced fluid motions (which
may different than a for an ensemble of microorganisms). With the low Reynolds number
limit in mind, we introduce the velocity

U ≡ F

μL
, (7)

which is the typical swimming velocity of the microorganism when the distributed propul-
sive force F is balanced by viscous stresses in a domain of size L. Using U , F and L, we
then scale the equations of motion as

x = Lx ′ , t = L

U
t ′ , f = F

L3
f ′ , (8)

u = Uu′ , p = F

L2
p′ , b = UN2L2

κ
b′ , (9)

where a prime denotes a non-dimensional variable. The scaling for buoyancy arises from
assuming a balance between the advection of the background gradient, N2, and diffusion of
buoyancy, and may be viewed alternatively as an assumption that b is an O(Pe) correction
to the background buoyancy field, N2 z. These scalings yield the non-dimensional system
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∇ · u′ = 0, (10)

Re

(
∂u′

∂t ′
+ u′ · ∇u′

)
= −∇p′ +

(
L

�

)4

b′ ẑ + ∇2u′ + f ′, (11)

Pe

(
∂b′

∂t ′
+ u′ · ∇b′

)
+ w′ = ∇2b′, (12)

where the Reynolds and Péclet numbers are

Re ≡ F

ρ0ν2
, Pe ≡ F

ρ0νκ
, (13)

with ν = μ/ρ0 the kinematic viscosity. The length � appearing in (11) is the intrinsic
stratification length scale given by

� ≡
( νκ

N2

)1/4
. (14)

In addition to the two expected dimensionless parameters, Re and Pe, we see that the ratio
of length scales, (L/�)4, multiplies the buoyancy term in the fluid momentum equation (11)
and its magnitude thus determines the importance of buoyancy forces.

What is the typical value for �? To derive an estimate we must consider not only the overall
stratification of the ocean, but the microstructure and small-scale variation in stratification
which result from turbulent motions and disordered displacements of fluid on the scale of
the microorganism. If we assume that the small scale variability in the temperature and
salinity gradient is at most about 200 times the mean value (Gregg, 1977), and that N in the
ocean measured on length scales of tens of meters varies roughly from 0.2 to 4 cycles per
hour (Talley et al., 2011), then we find that � ≈ 100 μm to 10 mm for salt stratification and
� ≈ 500 μm to 40 mm for thermal stratification. Most swimming microorganisms in the
ocean are bacteria and plankton with a typical size ranging from 1 μm to 100 μm, which
implies that in regions of strong local stratification the grouping (L/�)4 can be at most order
one, and otherwise is typically very small.

d. Leading-order linear system of equations at low Re and Pe

If we retain only the leading-order terms in Re and Pe in (10)–(12), as is appropriate for
microorganisms in either temperature or salt stratification, and restore the dimensionality of
the equations, we obtain a linear system of equations describing the motion of the stratified
fluid driven by a force density, f , at low Reynolds and Péclet number,

∇ · u = 0, (15)

∇p − μ∇2u = ρ0b ẑ + f , (16)

wN2 = κ∇2b, (17)
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where the force density for our model swimmer is given by (6). The linearity of these
equations will allow us to calculate their solutions analytically using Fourier transforms.

The fundamental solution to this system of equations, or the solution corresponding to a
point force f = Fδ(x), was first analyzed by List (1971) and later termed the “Stratlet” by
Ardekani and Stocker (2010), with reference to the “Stokeslet” solution for a point force
in unstratified low Reynolds number flow. As would be expected, both List (1971) and
Ardekani and Stocker (2010) found that vertical fluid motion is suppressed by stratification.
For example, List (1971) showed that for the horizontally-oriented Stratlet the vertical
velocity decays exponentially for z 
 x, y, where z is the direction of straitification, and as
s−7/3 for large s, where s = √

x2 + y2 is the distance from the singularity in the horizontal
plane z = 0. This contrasts with the Stokeslet, for which all velocities decay with 1/r ,
where r is the distance to the singularity.

3. Mixing efficiency

The mechanical energy equation is derived by taking the dot product of the momentum
equation (3) with the velocity field, u, and integrating over all of space. Using the divergence
theorem, and assuming that the disturbance decays sufficiently quickly as |x| 
 1, one finds
the kinetic energy equation,

d

dt

∫
1
2ρ0|u|2 dV + μ

∫
|∇u|2 dV︸ ︷︷ ︸
≡Pvisc

−ρ0

∫
wb dV︸ ︷︷ ︸

≡Pg

=
∫

u·f dV︸ ︷︷ ︸
≡Ptot

, (18)

where we have defined three terms: Ptot is the rate at which the force density, f , is working
on the fluid, Pvisc is the rate at which this work is turned into heat by viscous dissipation, and
Pg is the rate of creation of gravitational potential energy. We can obtain another expression
for Pg by multiplying the buoyancy equation (4) by b and integrating over the volume,
leading to

d

dt

∫
1
2b2 dV + N2

∫
wb dV = −κ

∫
|∇b|2 dV . (19)

We are concerned with steady flows hence both d/ dt terms in (18) and (19) disappear.
Defining the mixing efficiency, η, as the ratio between Pg and Ptot, we obtain

η = Pg

Ptot
= ρ0κ

∫ |∇b|2 dV

N2
∫

u·f dV
· (20)

We always have η ≤ 1, and the larger the efficiency, the larger the proportion of the forcing
used for mixing. Note that following Osborn (1980), the mixing efficiency η can be related
to the “flux coefficient” Γ = Pg/Pvisc (the ratio between the rate of creation of gravitational
potential energy and the rate of viscous dissipation) by η = Γ/(Γ + 1).
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4. Scaling argument for small particles and swimmers in weak stratification

Let us consider a small settling particle, or a self-propelled microswimmer, with a char-
acteristic size a. What are the expected scalings for both energetic contributions Ptot and
Pg? The relevant limit to consider for microorganisms is a � �, which we consider below.
The complementary limit a/� 
 1 is addressed in Appendix A.

The scaling for the total power input is straightforward. Indeed Ptot should scale with the
product of some characteristic fluid stress, σ, exerted by the fluid on the particle and some
characteristic velocity, U , such that Ptot ∼ σUa2. In both cases of settling particles and
swimming at low Reynolds number, the flow equations are linear and thus we expect the
typical stress to scale linearly with velocity with a viscous relationship σ ∼ μU/a and thus
obtain the classical scaling for the total power input

Ptot ∼ μaU 2. (21)

Developing a scaling argument for the rate of increase of the gravitational potential
energy requires a detailed look at the fluid dynamics. At low Reynolds number the velocity
disturbance far from a settling particle in an unstratified fluid looks like the disturbance due
to a point force and decays as 1/r , where r is the distance from the particle. In contrast, the
velocity disturbance far from a swimmer at low Reynolds number looks like the disturbance
created by a force dipole and decays as 1/r2 (Chwang and Wu, 1975; Lauga and Powers,
2009). This asymptotic difference is related to the fact that a settling particle exerts a net
force on the fluid, while a microswimmer does not. Below we show that this results in quite
different mixing efficiences: a settling particle is much more efficient than a microswimmer.
However, in both cases, the algebraic decay takes place only within some region a � r � �

where the buoyancy term in the momentum equation (16) is negligible, and beyond a length
scale O(�) the vertical velocity is suppressed by stratification.

For a settling particle the velocity then scales as |u| ∼ U(a/r), which we can then insert
into the buoyancy conservation equation to find a scaling for the buoyancy,

U
(a

r

)
N2 ∼ κ∇2b, (22)

leading to

b ∼ UarN2

κ
· (23)

The rate of creation of gravitational potential energy is then given by an integral over a
volume of size O(�3)

Pg ∼ −ρ0

∫∫∫
r<�

wb dV (24)

and thus we obtain the scaling relation

Pg ∼ ρ0

∫ �

0
U

(a

r

) UarN2

κ
r2 dr ∼ ρ0U

2a2N2�3

κ
· (25)
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Since the mixing efficiency is defined as η = Pg/Ptot, we can use (21) and (25) and recall

the definition � = (
νκ/N2

)1/4
, to find that for a/� � 1,

η ∼ a

�
, (26)

for a settling particle which exerts a net force on the fluid.
In the case of the microswimmer, the typical velocity decays faster as u ∼ U(a/r)2,

which implies b ∼ Ua2N2/κ and Pg ∼ ρ0U
2a4N2�/κ by the same argument given for the

settling particle, leading to an efficiency scaling as

η ∼
(a

�

)3
, (27)

for a swimmer exerting a dipolar perturbation on the fluid. While this scaling analysis
does not determine multiplicative constants, it indicates however that mixing efficiencies
by microorganisms should be expected to be small. The smallest values of � in the ocean
correspond to a strong salt stratification and are around 100 μm. For larger microorgan-
isms which have a size on the order of 10 μm, we obtain an estimate for the efficiency of
η ∼ 0.1%.

5. Solving the full regularized model

Moving beyond the scaling analysis, in this section we solve the governing equations
analytically for the regularized microswimmer model. As we detail below, the full solution
recovers the physical scalings from the previous section and also determines the multiplica-
tive constants.

a. Solution in Fourier space

We employ the three-dimensional Fourier transform–inverse transform pair defined for
an arbitrary function g(x) as

F [g(x)] = g̃(k) =
∫

R3
g(x)e−ik·x dV, (28)

g(x) = 1

8π3

∫
k−space

g̃(k)eik·x dk, (29)

where the g̃(k) is the Fourier transform of g(x) and k = {k1, k2, k3} is the wave number
vector. Applying this Fourier transform to (15)–(17) and using the identity ∂/∂xi → iki

yields the algebraic system

k · ũ = 0, (30)

ikp̃ + μk2ũ = ρ0b̃ ẑ + f̃ , (31)

w̃N2 = −κk2b̃. (32)
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This system is easily solved by taking the dot product between k and (31), solving for
the pressure, and then combining (32) with the ẑ-component of (31) to find the buoyancy.
The solution can be written concisely in spherical coordinates, where the physical space
coordinates x = {r, θ, φ} correspond to the Fourier space coordinates k = {k, ψ, ω}. In this
case, the unit vectors k̂ = k/k and ψ̂ can be written in terms of the Cartesian unit vectors
x̂, ŷ, and ẑ as

ψ̂ = x̂ cos ψ cos ω + ŷ cos ψ sin ω − ẑ sin ψ, (33)

k̂ = x̂ sin ψ cos ω + ŷ sin ψ sin ω + ẑ cos ψ. (34)

Inspection of these relations reveals that k̂ cos ψ = ψ̂ sin ψ + ẑ. Armed with this identity,
we find we can write the buoyancy simply as

b̃ = sin ψ

(k�)4 + sin2 ψ
ψ̂ · (

f̃ /ρ0
)
. (35)

The pressure then becomes

p̃ = − i

k

(
k̂ + ψ̂

cos ψ sin ψ

(k�)4 + sin2 ψ

)
· f̃ , (36)

and the fluid velocity is

ũ = 1

μk2

(
I − k̂k̂

)
· f̃ − ψ̂ b̃

sin ψ

νk2
,

= 1

μk2

(
I − k̂k̂ − ψ̂ψ̂

sin2 ψ

(k�)4 + sin2 ψ

)
· f̃ .

(37)

Written in this form, we see clearly the part of the solution ũ which corresponds to the
solution for unstratified low Reynolds number flow (to which this solution limits when
b = 0), and the part which corresponds to buoyancy forces induced by the presence of a
density stratification. This solution is identical to the solution for a point force in stratified
low Reynolds number flow, or the “Stratlet” (List, 1971; Ardekani and Stocker, 2010) with
our general forcing term f̃ replacing the point force. In Fourier space, the regularized dipole
is then easily derived from the solution for the regularized Stokeslet as

{̃u, p̃, b̃, f̃ }rD = −i (β · k) {̃u, p̃, b̃, f̃ }rS . (38)

The formulas above provide the full analytical solution to the low–Re, low–Pe problem in
Fourier space.
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Figure 1. Buoyancy isocontours and streamlines for (a) the vertically-oriented Stratlet dipole, (b) the
vertically-oriented regularized Stratlet dipole with a/� = 1/2, (c) the horizontally-oriented Stratlet
dipole, and (d) the horizontally-oriented regularized Stratlet dipole with a/� = 1/2.

b. Solution in physical space

In order to visualize the solution we can invert the Fourier space solutions back into
physical space numerically by adapting MATLAB’s ifft function. A contour plot of
isocontours of buoyancy with streamlines superimposed is shown in Figure 1 for a = 0
(Stratlet dipole, Fig. 1a, 1c) and a = 1/2 (regularized Stratlet dipole, Fig. 1b, 1d) for a
vertical and horizontally-oriented microswimmer (β = |β|ẑ and x̂, respectively).

In all four cases, the flow field near the microswimmer displays the usual dipolar struc-
ture while farther away (roughly at a distance r ≈ �) the vertical flow is suppressed by the
stratification. For the vertically-oriented swimmers, the flow field is organized into toroidal
recirculation regions which extend through the entire domain. The horizontally-oriented
microswimmers, on the other hand, induce only a small recirculation region close to the
origin, and the flow field is essentially horizontal when r/� ≈ 10. The effect of the reg-
ularization is to weaken the flow field and to move recirculating regions away from the
origin.
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c. Mixing efficiency

The values of Pg and Ptot, and thus the mixing efficiency, can be evaluated directly in
Fourier space using Parseval’s theorem to relate integral expressions over all physical space
to integrals over Fourier space. Specifically we have

Pg = −ρ0

∫
R3

w(x)b(x) dV = − ρ0

8π3

∫
k−spacẽ

w(k)̃b(−k) dk, (39)

and

Ptot =
∫

R3
u(x) · f (x) dV = 1

8π3

∫
k−spacẽ

u(−k) · f̃ (k) dk. (40)

We consider first the case of a microswimmer oriented vertically, so that the solution
is axisymmetric. If we then insert the regularized dipole solution, express the integral in
spherical coordinates {k, ψ, θ} with k1 = k cos θ sin ψ, k2 = k sin θ sin ψ, k3 = k cos ψ, and
k = |k|, non-dimensionalize the integral using k′ = k� and drop the primes for simplicity,
and integrate over θ, we obtain the expressions

Pg = D2

4μ�π2

∫ ∞

0
V (k)e−(ak/�)2

dk, (41)

and

Ptot = D2

4μ�π2

∫ ∞

0
W(k)e−(ak/�)2

dk, (42)

where D = |β||F| is the total magnitude of the regularized dipole. The functions V (k) and
W(k) are defined by

V (k) = k6
∫ π

0

cos2 ψ sin5 ψ(
k4 + sin2 ψ

)2 dψ,

= 1

3
k6 (

2 + 15k4) + k10

√
1 + k4

(
4 + 5k4) log

[
1

k2

(√
1 + k4 − 1

)]
,

(43)

and

W(k) = k6
∫ π

0

cos2 ψ sin3 ψ

k4 + sin2 ψ
dψ,

= 2

3
k6 (

1 + 3k4) + 2k10
√

1 + k4 log

[
1

k2

(√
1 + k4 − 1

)]
.

(44)

We find similar expressions for the horizontally-oriented dipole and slightly more compli-
cated expressions for an arbitrarily oriented dipole; both are given in Appendix B.
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Figure 2. Mixing efficiency for the regularized Stratlet dipole, η, as a function of the length ratio a/�

for vertical microswimmers (blue, solid), horizontal microswimmers (red, dashed), and an ensemble
average over a uniform distribution of swimmer orientations (black, dotted). All three mixing effi-
ciencies scale as (a/�)3 when a/� � 1. The mixing efficiency of the vertically-oriented regularized
Stratlet dipole asymptotes to 1 when a/� 
 1 (see Appendix A) whereas for a horizontally-oriented
regularized Stratlet dipole it decreases as (a/�)−4 when a/� 
 1. The ensemble average should
approach (a/�)−4 as well for a/� 
 1 though the approach is slow within the range shown here.

The integrals can be analyzed numerically and we find they are also amenable to asymp-
totic analysis in the limits where a/� is either large or small. The details of these asymptotic
analyses are given in Appendix D. In the limit a/� � 1, which is most relevant to microor-
ganisms in the ocean, we find for vertically and horizontally microswimmers

ηvert (a/� � 1) = 1.21
(a

�

)3 − 2.29
(a

�

)4 + O
(a

�

)5
, (45)

and

ηhorz (a/� � 1) = 0.151
(a

�

)3 − 0.286
(a

�

)4 + O
(a

�

)5
. (46)

These asymptotic results confirm the prediction of the scaling analysis, η ∼ (a/�)3, and
further show that in this limit, the mixing efficiency of a horizontal microswimmer is about
one order of magnitude smaller than that of a vertical microswimmer.

In order to calculate the mixing efficiency for all values a/�, we numerically compute the
integrals in (41), (42), (60), and (61). The results are plotted in Figure 2 where we show the
mixing efficiency as a function of the ratio a/� for microorganisms swimming vertically
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(blue solid line) and horizontally (red dashed line). We also consider the more relevant
case of an ensemble of microorganisms whose orientations are uniformly distributed (black
dotted line). The mathematical averaging for an ensemble is detailed in Appendix C. Briefly,
the calculation can be reduced to a weighted average of contributions for the respective total
work and gravitational potential energy terms from the horizontally-oriented force dipole,
vertically-oriented force dipole, and contributions from additional singularities.

We first find that for a/� � 1, the regularized singularity model confirms the scaling
η ∼ (a/�)3 and agrees with the asymptotic result. When a/� 
 1, the mixing efficiency
predicted by the distributed force model for the vertically-oriented swimmers tends to 1.
Physically, the stratification is being lifted directly by the distributed force. Mathemati-
cally, it is a consequence of a dominant balance in the z-momentum equation between the
distributed forcing and buoyancy. In contrast, for the horizontally-oriented microswimmer,
mixing efficiency decays as η ∼ (a/�)−4 because the fluid motion incurred by the regular-
ized force is increasingly two-dimensional as a/� increases. In Appendix A we present a
scaling argument to explain this behavior of the mixing efficiency. In the ensemble average,
the mixing efficiency approaches (a/�)−4 as in the horizontal case. These results can also
be predicted by analyzing the integrals asymptotically, as shown in Appendix D.

Finally, we calculate the mixing efficiency expected from an ensemble of randomly
oriented, non-interacting microorganisms. The average total rate-of-working, P tot, and rate
of creation of gravitational potential energy, P g , are calculated as

P g,tot = 1

4π

∫ 2π

0

∫ π

0
Pg,tot(α) sin α dα dθ = 1

2

∫ π

0
Pg,tot(α) sin α dα, (47)

where Pg,tot(α) is the total rate-of-working or rate of creation of gravitational potential
energy for a swimmer oriented at an angle α with respect to vertical, and θ is the azimuthal
angle. From these we calculate the mixing efficiency of an ensemble as η = P g/P tot,
plotted as the black dotted line in Figure 2. We find that the mixing efficiency of the
ensemble reaches a maximum of η = 8% near a/� ≈ 1, providing an upper bound on the
mixing efficiency of a dilute suspension of microorganisms where correlations between the
motion of individuals can be neglected.

6. Discussion

We have used scaling arguments and the solution of the Stokes equation in a stratified fluid
to find the relationship between organism size, fluid properties, stratification, and mixing
efficiency for small microorganisms associated with Reynolds numbers much less than 1.
The length � in (14) combines all the relevant environmental properties of the fluid, and the
ratio of the organism size, a, to the “stratification length”, �, is the crucial control parameter
that determines mixing efficiency in the visco-diffusive regime.

The strength of the scaling argument is that it is independent of the particular form of the
model, relying only on the (universal) dipolar nature of the flow field around the swimming
microorganism when a/� � 1. The scaling argument also yields physical insight: when
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a/� � 1, the total rate-of-working on the fluid is largely dissipated by viscous stress in a
region comparable to the size of the microorganism, whereas gravitational potential energy
is created within a larger region of size �. An important consequence of this physical picture
for a/� � 1 is that the mixing efficiency depends on the spatial structure of the induced
velocity disturbance. Specifically, for force-free swimmers where velocities decay like 1/r2,
it scales as η ∼ (a/�)3, whereas for sinking particles or rising bubbles exerting a net force
on the fluid, and where velocities decay like 1/r , it scales as η ∼ a/�. When a/� 
 1,
the scaling analysis detailed in Appendix A implies that the velocity field resulting from a
horizontal disturbance is largely two-dimensional, as intuitively expected.

The physical picture implied by this scaling analysis differs substantially from that
implied by the scaling analysis for eddy diffusivities developed in Kunze (2011), which
does not depend on the monopolar or dipolar nature of the velocity field induced by settling
particles or force-free swimmers, respectively. Additionally, Kunze (2011) argued that the
effective diffusivity has no dependence on the scalar diffusivity κ or the magnitude of the
scalar gradient, where our analysis indicates the importance of the intrinsic length scale
� = (νκ/N2)1/4, which depends on fluid viscosity, scalar diffusivity, and scalar gradient.

The model predicts a maximum efficiency for ensembles of microorganisms which have
no preferential swimming direction to be around 8%, which is achieved if a/� = O(1). The
efficiency 0.08 might serve as an upper bound for the potential energy created in the ocean
by microorganisms. For example, using an approximate average Oxygen Utilization Rate
(OUR) and the physics of respiration, Dewar et al. (2006) estimate that the total metabolic
rate of all bacteria in the deep, unlit seas is about 6 TW. If we assume that all of these
bacteria expend all of their energy in swimming and mix the ocean at maximum efficiency,
this yields an upper bound for the creation of potential energy of 0.48 TW.

However, when calculated for realistic ocean parameters, we find that the value of � is
often large compared to the typical size of a bacterium and therefore the upper bound above
is far too generous. If a/� � 1 we then find that the mixing efficiency is very small and
even if a large portion of the bacterial metabolism is used in self-propulsion, the majority
of this energy would be dissipated by viscous stresses. For example, we might make a
conservative estimate by assuming that all oceanic microorganisms swim vertically (for
example, gyrotactic algae) and devote the majority of their metabolism to swimming. If we
suppose further that the ocean is strongly salt stratified with N = 2 cycles hr−1 ≈ 3.5 ×
10−3 radians s−1, κ ≈ 10−9 m−2 s−1, and ν = 1.6×10−6 m−2 s−1, then � = (

νκ/N2
)1/4 ≈

3.4 mm. For a 10 μm size-organism we then obtain

η ≈ 1.21
(a

�

)3 ≈ 3.1 × 10−8, (48)

showing that the total contribution of microorganisms to ocean mixing is negligible.
One possible objection to this estimate is that while N = 2 cycles hr−1 is a high value for

the average overall stratification in the ocean measured over length scales of hundreds of
meters, there exists significant microstructure and small-scale variation in stratification due
to turbulent and disordered motion of fluid which may increase local gradients in density on
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the scales experienced by microorganisms. In order to take this small-scale variation into
account we can use estimates for the Cox number, Cx, which is a non-dimensional measure
of the small-scale variation of a scalar (Gregg, 1977). Using the example of temperature,
T , we have

Cx =
〈
(∂T /∂z)2〉
〈∂T /∂z〉2 , (49)

where the bracket 〈·〉 denotes an average over some region in space. The average variation
in temperature gradient can be easily related to the average variation in mixing efficiency
when a/� � 1 as

〈η〉 ≈ 1.21a3
〈

1

�3

〉
= 1.21

a3

(νκ)3/4

〈
N3/2〉 . (50)

for a microswimmer oriented vertically. In waters which are stratified by temperature the
buoyancy frequency N is proportional to (∂T /∂z)1/2, we can estimate

〈
N3/2

〉
with the Cox

number by assuming that
〈
(∂T /∂z)3/4〉 ≈ 〈

(∂T /∂z)2〉3/8
. This assumption will tend to over-

estimate the effects of the small-scale variation of ∂T /∂z on
〈
N3/2

〉
and thus overestimate

the average mixing efficiency. We then find that〈
N3/2〉 ≈ (

Cx N4
0

)3/8
, (51)

where N0 is the buoyancy frequency measured on large scales, which implies that the actual
average mixing efficiency taking into account small-scale variations in density gradient
might be estimated with

〈η〉 ≈ Cx3/8η0, (52)

where η0 is the mixing efficiency estimated using the large-scale buoyancy frequency N0.
A large Cox number would then naturally lead to an increase of the mixing efficiency from
the value in (48). The highest Cox number measured by Gregg (1977) over three cruises was
Cx ≈ 240, leading to an increase by a factor of eight above the result in (48). One would
have to find an enhancement of mixing efficiency by at least five orders of magnitude for
mixing by microorganisms to be geophysically relevant. It seems therefore that even taking
into account microstructure variations in density, the mixing efficiency of microswimmers
is negligible.

An important point is that this conclusion does not preclude the possibility that larger
organisms, which may produce fluid motions which possess larger Re, larger Pe, and larger
a/�, are associated with appreciable mixing efficiencies. This important question in bio-
genic mixing remains open. The conclusion that bacteria do not contribute to ocean mixing
confirms that Dewar et al. (2006) were correct to exclude bacteria from their assessment
of the total contribution of swimming organisms to the mechanical energy budget of the
ocean.
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APPENDIX A

Efficiency scaling in the limit a 
 �

a. Vertical orientation

When the distributed force f is oriented vertically and its size is large, we find the
dominant balance in the momentum equation as ρ0bẑ ∼ f because the buoyancy term
scales with (a/�)4. This means that Pg = ρ0

∫
wb dV ∼ ∫

wf3 dV . With f ∼ D/a4,
the momentum balance implies b ∼ D/ρ0a

4 and therefore from buoyancy conservation
w ∼ Dκ/ρ0N

2a6, which gives

Ptot ∼ Pg = ρ0

∫
R3

wb dV ∼ ρ0

(
Dκ

N2ρ0a6

) (
D

ρ0a4

)
a3 = D2�4

μa7
, (53)

where we have substituted κ/N2 = �4/ν. Consequently, we have η = Pg/Ptot ∼ 1, as seen
computationally in Figure 2.

b. Horizontal orientation

In this case it is more difficult to find the gravitational potential energy because neither
the buoyancy or vertical velocity is directly balanced by the distributed force. For u and v
we have the same balance u ∼ v ∼ D/ρ0νa

2. To obtain a relationship between buoyancy
and the velocity we take partial derivatives in z and y in the y– and z–momentum equations
respectively, subtract them, and then substitute for w using the partial derivative in x of the
buoyancy conservation equation, which yields

(
�4∇2 + 1

) ∂b

∂y
= ν∇2

(
∂u

∂z

)
=⇒ b ∼ D

ρ0a4
· (54)

We then find w ∼ D�4/μa6 from buoyancy conservation, which implies

Pg = ρ0

∫
R3

wb dV ∼ ρ0

(
D�4

μa6

) (
D

ρ0a4

)
a3 ∼ D2�4

μa7
, (55)

and

Ptot =
∫

R3
u

(
f · x̂

)
dV ∼

(
D

μa2

) (
D

a4

)
a3 ∼ D2

μa3
, (56)

and therefore the efficiency scales as

η ∼
(a

�

)−4 · (57)
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APPENDIX B

Fourier space integrals

a. Vertically-oriented regularized dipole

For the rate-of-creation of gravitational potential energy by a vertically-oriented regular-
ized dipole of the form (6), for which β = |β|ẑ, we have

Pg = ρ0

∫
R3

wrD(x)brD(x) dV ,

= ρ0

8π3

∫
k−space

w̃rD(k)̃brD(−k) dk ,

= ρ0

8π3

∫
k−space

k2
3w̃

rS(k)̃brS(−k) dk ,

= D2

4π2ν�3

∫ ∞

0
V (k)e−(kε)2

dk , (58)

where k = |k| and ε = a/�, and V (k) is defined in (43). In the last step we have inserted
the solutions, non-dimensionalized the integral by substituting k = k′/� (and then dropping
the primes for simplicity), converted to spherical coordinates, and integrated from 0 to
2π over the azimuthal angle (in the vertical case, this integral is trivial as the solution is
axisymmetric). For the total rate-of-working on the fluid we find, in similar fashion,

Ptot = 1

8π3

∫
k−space

k2
3

[̃
u(k)rS · f̃ (−k)rS] dk ,

= D2

4π2μ�3

∫ ∞

0
W(k)e−(kε)2

dk, (59)

where W(k) is defined in (44).

b. Horizontally-oriented regularized dipole

The rate-of-creation of gravitational potential energy by a vertically-oriented regularized
dipole of the form (6), for which β = |β|x̂, following the calculation for the vertically-
oriented regularized dipole, becomes

Pg = 3D2

32π2μ�3

∫ ∞

0
V (k)e−(kε)2

dk , (60)

while the total rate-of-working on the fluid is given by

Ptot = D2

4π2μ�3

[
1

8

∫ ∞

0
U(k)e−(kε)2

dk + 1

2

∫ ∞

0
W(k)e−(kε)2

dk

]
,
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where U(k) is defined

U(k) = k2 (
1 + k4) ∫ π

0

sin5 ψ

k4 + sin2 ψ
dψ,

= 2

3
k2 (

2 − k4 − 3k8) + 2k10
√

1 + k4 log

[
1

k2

(√
1 + k4 − 1

)]
.

(61)

Here the integrals are written after integration over the azimuthal angle. The solution is no
longer axisymmetric but this integral is still straightforward (and, instead of multiplying
the expression by 2π as in the axisymmetric case, produces other factors).

APPENDIX C

Ensemble of microswimmers with uniformly distributed orientations

To find the average of an ensemble of microswimmers with uniformly distributed orien-
tations, we must first find the flow field for a regularized dipole with arbitrary orientation.
Consider the Stratlet oriented at an arbitrary angle α with respect to the vertical direc-
tion. Because the governing equations are linear, we can express it as a superposition of a
horizontally-oriented Stratlet, H urS, and a vertically-oriented Stratlet, V urS,

ũrS(α) = H ũrS sin α + V ũrS cos α. (62)

For a dipole oriented at the same angle α we have that ũrD = −i (β · k) ũrS with
β = D

(
sin αx̂ + cos αẑ

)
and where x̂ and ẑ are unit vectors in the horizontal and ver-

tical directions, respectively. The velocity field for the regularized dipole is then given
by

ũrD (α) = −iD (k1 sin α + k3 cos α)
(
H ũrS sin α + V ũrS cos α

)
. (63)

Expressions for the other variables such as the force distribution, f̃ , and the buoyancy
field, b̃, follow similarly. From these, we are then able to calculate the rate-of-creation of
gravitational potential energy and the total rate-of-working on the fluid using their definitions
in (18).

For the rate-of-creation of gravitational potential energy we find

Pg = ρ0

8π3

∫
k−space

w̃(k)̃b(−k) dk = −ρ0N
2

8π3κ

∫
k−space

1

k2
w̃(k)w̃(−k) dk,

= ρ0N
2D2

8π3κ

∫
k−space

1

k2

[
k1

H w̃rS(k) sin2 α + k3
V w̃rS(k) cos2 α

+ sin α cos α
(
k1

V w̃rS(k) + k3
H w̃rS(k)

) ]2
dk, (64)
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where we have used the relation between w and b in (17) to write the integral solely in
terms of the regularized Stokeslet velocity field. Similarly, for the total rate-of-working on
the fluid we obtain

Ptot = D2

8π3

∫
k−space

H ũS
1

(
k2

1 sin4 α + k2
3 sin2 α cos2 α

) + 2
(
V ũS

1 + H ũS
3

)
k1k3 sin2 α cos2 α

+ V ũS
3

(
k2

1 sin2 α cos2 α + k2
3 cos4 α

)
dk

= H Ptot sin4 α + V Ptot cos4 α

+ sin2 α cos2 α

[
D2

8π3

∫
k−space

k2
3
H ũrS + 2k1k3

(
V ũrS + H w̃rS) + k2

1
V w̃rS dk

]
.

(65)

An ensemble average, P , can be found by integrating each energetic rate over all orien-
tations following

P = 1

4π

∫ 2π

0

∫ π

0
P(α) sin α dα dθ = 1

2

∫ π

0
P(α) sin α dα. (66)

For the ensemble-averaged rate of creation of gravitational potential energy we then find

P g = 8

15
H Pg + 1

5
V Pg

+ 2

15

[
ρ0N

2D2

8π3κ

∫
k−space

1

k2

(
k2

1

(
V w̃rS)2 + 4k1k3

(
V w̃rS) (

H w̃rS) + k2
3

(
H w̃rS)2

)
dk

]
,

(67)

and for the ensemble-averaged total rate-of-working on the fluid we have

P tot = 8

15
H Ptot + 1

5
V Ptot

+ 2

15

[
D2

8π3

∫
k−space

k2
3
H ũrS + 2k1k3

(
V ũrS + H w̃rS) + k2

1
V w̃rS dk

]
, (68)

all of which can easily be evaluated computationally from the analytical solutions.

APPENDIX D

Asymptotic evaluation of mixing efficiency

It it possible to mathematically analyze the integrals for Ptot and Pg asymptotically in
the limits a/� � 1 and a/� 
 1 in order to generate approximate formulae for the mixing
efficiency. Here we examine the integrals for the vertically-oriented regularized force dipole
as an example; the approach for the asymptotic evaluation of the horizontal integrals is
similar. We use the shorthand ε = a/� to simplify the expressions.
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The total rate-of-work, Ptot, and the rate-of-creation of gravitational potential energy, Pg ,
for the vertically-oriented regularized force dipole are given by

Pg = D2

4π2μ�

∫ ∞

0
V (k)e−(εk)2

dk, (69)

and

Ptot = D2

4π2μ�

∫ ∞

0
W(k)e−(εk)2

dk, (70)

where we have defined ε = a/� and V (k) and W(k) are defined by Equations 43 and 44,
respectively. The coefficients in front of the integrals are identical so we need only consider
the ratio of the integrals.

a. Small-organism and weak stratification limit, a/� � 1

We find the first two terms in an asymptotic expansion of the integral for ε = a/� � 1.
Because W(k) is divergent, the leading order contribution as ε � 1 will come from large
values of k. As such we attempt to “divide and conquer” the integrals by splitting them into
a local contribution for large k and a global contribution for the rest. For the integral for the
rate of creation of gravitational potential energy Ig we write

Ig =
∫ ∞

0
V (k)e−(εk)2

dk =
∫ M

0
V (k)e−(εk)2

dk + 1

ε

∫ ∞

εM

V (u/ε) e−u2
du = Ig,G + Ig,L,

(71)

where we take M 
 1 as ε � 1. We find for the local contribution

Ig,L = 1

ε

∫ ∞

Mε

(
16

105

ε2

u2
− 64

315

ε6

u6
+ O(ε10/u10)

)
e−u2

du,

= 16

105

1

M
− 64

1575

1

M5
− 16

√
π

105
ε + 64

945

ε2

M3
− 16

105
Mε2 + O(M3ε4, ε4/M).

(72)

Because V (k) vanishes as k 
 1, we surmise that the global contribution is a constant
at leading order. We calculate this contribution numerically. Because V (k) involves the
cancellation of very large terms at large k, the numerical integration is aided by patching
the integral to its Taylor series expansion around k 
 1. We find∫ M

0
V (k) dk + 16

105

1

M
− 64

1575

1

M5
+ O

(
1

M9

)
=

∫ ∞

0
V (k) dk � 0.143313, (73)

and therefore

Ig (ε � 1) = 0.1433 − 16
√

π

105
ε + O

(
ε2) . (74)
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The integral for the total rate-of-working Itot is approached in the same manner. For the
local integral we find

Itot,L = 1

ε

∫ ∞

Mε

(
4

15

u2

ε2
− 16

105

ε2

u2

)
e−u2

du =
√

π

15

1

ε3
− 4

45
M3 + 4

75
M5ε2 + O(M7ε4).

(75)

In the global integral we surmise that the largest term will cancel the 4M3/45 term in the
local integral and that the next order term will contribute a constant. We find this constant
by subtracting 4k2/15 from the integrand, which cancels the largest contribution to W(k),
and numerically evaluating the remaining integral using the same method used for Ig . We
find∫ ∞

0

(
W(k) − 4

15
k2

)
dk =

∫ M

0

(
W(k) − 4

15
k2

)
dk − 16

105

1

M
+ 32

1575

1

M5
+ O

(
1

M9

)
= −0.191089. (76)

We therefore have

Itot (ε � 1) =
√

π

15

1

ε3
− 0.1911 + O(ε). (77)

The efficiency η is therefore given by

η (ε � 1) = Ig (ε � 1)

Itot (ε � 1)
= 1.212ε3 − 2.286ε4 + O

(
ε5) , (78)

which agrees well with the full calculation of mixing efficiency. The calculation for the
horizontal integrals is slightly more involved because there are two terms in the expression
for the total rate of work, but the approach is identical, and we find

ηhorz (ε � 1) = 0.1516ε3 − 0.2857ε4 + O
(
ε5) . (79)

b. Large-organism and strong stratification limit, a/� 
 1

The limit a/� 
 1 is easier than a/� � 1. Again we use the shorthand ε = a/�. As
ε 
 1, the integrand will be very small except in a small region around k = 0. Thus all that
is required is to expand the integrands around k = 0 and integrate term by term. For Ig we
find

Ig(ε 
 1) =
∫ ∞

0
V (k)e−(kε)2

dk,

=
∫ ∞

0

(
2

3
k6 + 8k10 log (k) + (5 − 2 log (4)) k10 + O(k14, k14 log (k))

)
e−(kε)2

dk,

= 5
√

π

8
ε−7 − 945

√
π

8
ε−11 log (ε) + 226.953ε−11 + O(ε−15, ε−15 log (ε)).

(80)



70 Journal of Marine Research [72, 2

For Itot we find

Itot(ε 
 1) =
∫ ∞

0
W(k)e−(kε)2

dk,

=
∫ ∞

0

(
2

3
k6 + 4k10 log (k) + (2 − log (4)) k10 + O(k14, k14 log k)

)
e−(kε)2

dk,

= 5
√

π

8
ε−7 − 945

√
π

16
ε−11 log (ε) + 100.391ε−11 + O(ε−15, ε−15 log (ε)).

(81)

The efficiency η is therefore

η (ε 
 1) = Ig (ε 
 1)

Itot (ε 
 1)
= 1 − 945

10
ε−4 log [ε] + O

(
ε−8) . (82)

The calculation for the horizontally-oriented swimmer can be approached in the same way,
which yields

ηhorz (ε 
 1) = 15

8
ε−4 + 2835

8
ε−8 log [ε] + O

(
ε−8) . (83)

c. Summary of asymptotic calculations

As ε = a/� � 1, we find that the mixing efficiency of a vertically-oriented swimmer is

ηvert

(a

�
� 1

)
= 1.212

(a

�

)3 − 2.286
(a

�

)4 + O
(a

�

)5
. (84)

For the mixing efficiency of a horizontally-oriented swimmer as ε = a/� � 1 we find

ηhorz

(a

�
� 1

)
= 0.1516

(a

�

)3 − 0.2857
(a

�

)4 + O
(a

�

)5
. (85)

As ε = a/� 
 1, we find for the vertically-oriented swimmer

ηvert

(a

�

 1

)
= 1 − 945

10

(
1

a/�

)4

log
[a

�

]
+ O

(
1

a/�

)8

. (86)

For the horizontally swimmer as ε = a/� 
 1,

ηhorz

(a

�

 1

)
= 15

8

(
1

a/�

)4

+ 2835

8

(
1

a/�

)8

log
[a

�

]
+ O

(
1

a/�

)8

. (87)

In all four cases, the asymptotic results agree quantitatively with our numerical computa-
tions.
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