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We derive an asymptotic model that describes the nonlinear coupled evolution
of (i) near-inertial waves (NIWs), (ii) balanced quasi-geostrophic flow and (iii)
near-inertial second harmonic waves with frequency near 2f0, where f0 is the local
inertial frequency. This ‘three-component’ model extends the two-component model
derived by Xie & Vanneste (J. Fluid Mech., vol. 774, 2015, pp. 143–169) to
include interactions between near-inertial and 2f0 waves. Both models possess two
conservation laws which together imply that oceanic NIWs forced by winds, tides
or flow over bathymetry can extract energy from quasi-geostrophic flows. A second
and separate implication of the three-component model is that quasi-geostrophic flow
catalyses a loss of NIW energy to freely propagating waves with near-2f0 frequency
that propagate rapidly to depth and transfer energy back to the NIW field at very
small vertical scales. The upshot of near-2f0 generation is a two-step mechanism
whereby quasi-geostrophic flow catalyses a nonlinear transfer of near-inertial
energy to the small scales of wave breaking and diapycnal mixing. A comparison
of numerical solutions with both Boussinesq and three-component models for a
two-dimensional initial value problem reveals strengths and weaknesses of the model
while demonstrating the extraction of quasi-geostrophic energy and production of
small vertical scales.
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1. Introduction
Near-inertial waves (NIWs) are inertia–gravity waves in rotating and stratified fluids

with frequencies near the local inertial frequency, f0. In the oceans of Earth, an almost-
universal strong density stratification means that NIWs have very small aspect ratios,
large vertical shears and the lowest of internal wave frequencies. Partly because of
their small aspect ratios and low frequencies, oceanic NIWs are generated by such
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diverse processes as fluctuating winds and flow over topography, contain roughly half
of the total internal wave kinetic energy and are a main contributor to diapycnal
mixing (Ferrari & Wunsch 2009).

The weak dispersion and slow propagation of NIWs exposes them to strong
interaction with balanced quasi-geostrophic (QG) flows. A basic introduction to NIW
propagation through non-uniform balanced flows is given by the ray theories of
Mooers (1975) and Kunze (1985), which show that near-inertial energy is attracted to
regions of negative balanced vorticity and expelled from regions of positive vorticity.
A more general theory valid both for ray-like NIW propagation and scattering by
smaller-scale balanced flows was developed by Young & Jelloul (1997, YBJ hereafter).
YBJ linearized the Boussinesq equations around a prescribed background flow and
exploited weak near-inertial dispersion to develop a two-time asymptotic expansion
that isolates the slow evolution of NIWs. The resulting YBJ NIW equation, which is
similar to (1.8) below, describes the weakly dispersive propagation of β-plane NIWs
though advecting and refracting balanced flows of near-arbitrary spatial structure.

The YBJ NIW equation successfully describes many aspects of near-inertial
propagation through realistic balanced flows (Klein & Smith 2001; Klein, Smith &
Lapeyre 2004; Danioux, Klein & Rivière 2008), but ignores nonlinear finite-amplitude
NIW dynamics and their corresponding feedback onto the balanced flow. In pursuit
of a richer theory describing the coupled evolution of NIWs and balanced flows,
Xie & Vanneste (2015, XV hereafter) derived a generalized-Lagrangian-mean model
which joins the YBJ NIW equation to the QG equations. Like Bühler & McIntyre
(1998) and Wagner & Young (2015) and as in (1.7) below, in the XV model an
NIW-induced balanced flow takes part in advecting QG potential vorticity and thus
in the evolution of QG flow.

1.1. The 2f0 harmonic and motivation for a three-component model
Both YBJ and XV lack a conspicuous aspect of NIW evolution observed in the
kinetic energy frequency spectra of the Ocean Storms Experiment (D’Asaro et al.
1995), the observations of Niwa & Hibiya (1999) and in the simulations of NIW–QG
interaction by Danioux et al. (2008): the nonlinear generation of internal waves with
frequency 2f0. While these 2f0 waves have little horizontal kinetic energy relative to
their parent NIWs, they can dominate pressure fields and contribute appreciably to
vertical velocity fields and isopycnal displacements. Remarkably, 2f0 generation and
subsequent horizontal radiation can remove energy from spatially compact regions
of NIW–QG interaction, as discussed below and illustrated in figure 1. A primary
motivation for this paper is the derivation of a more complete set of equations
that contains the essential elements of YBJ and XV while including 2f0 waves.
This derivation yields a model with three components: NIW velocity, balanced QG
potential vorticity and the amplitude of the 2f0 pressure.

To motivate the three-component model, we consider an initial value problem
in the Boussinesq equations in which a surface-concentrated NIW interacts with a
balanced barotropic jet in two dimensions (x, z). We use a constant inertial frequency
f0 = 10−4 s−1 and buoyancy frequency N = 2 × 10−3 s−1 associated with a stable
background buoyancy profile. The velocity field is u= ux̂+ vŷ+wẑ and the dynamic
buoyancy perturbation from the background is b, so that the available potential energy
density is b2/2N2. The initial v is a barotropic jet in geostrophic and hydrostatic
balance flowing along the axis of y, while the initial u is a surface-concentrated,
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FIGURE 1. (Colour online) The numerical solution of a two-dimensional Boussinesq initial
value problem involving the interaction between a barotropic jet and a surface-concentrated
NIW. The shading shows the potential energy density b2/2N2 and the contours show the
kinetic energy density at 10 levels between 0.01 and 0.1 m2 s−2 at t = 5–t = 80 inertial
periods. The horizontal line on the t = 5, 10 and 20 snapshots shows the wavelength of
a vertical mode-one 2f0 frequency internal wave. The slanting lines on the t = 40 and
t = 80 snapshots show the characteristic propagation angles of NIWs with the indicated
frequencies. The initial v and u are given in (1.1) and (1.2), where V1 = 0.4 m s−1,
L = 40 km, U = 0.8 m s−1 and h = 100 m. Only the central 800 km of a 1200 km
computational domain is shown. The solution is relaxed to a surface-concentrated inertial
oscillation in sponge layers 150 km thick on the edges of the domain.
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horizontally uniform and unbalanced flow which develops into an NIW. The balanced
jet has the Gaussian profile

v(x, z, 0)= V0 + V1 exp(−x2/2L2), (1.1)

where V0 is defined so that v(x, z, 0) has zero horizontal average and thus no
unbalanced component. The initial u is horizontally uniform and concentrated in a
layer of depth h:

u(x, z, 0)=U0 exp(−z2/2h2). (1.2)

The initial buoyancy b and vertical velocity w are zero. We solve this initial value
problem in the Boussinesq equations using the spectral model of Winters, MacKinnon
& Mills (2004) with 1536 Fourier modes in x and 768 sine/cosine modes in z.

If the jet in (1.1) were not present, the initial condition in u would develop into a
horizontally uniform non-propagating perpetual inertial oscillation. Instead, refraction
by the imposed jet injects small horizontal scales of size ∼L into the NIW field,
thus inducing near-inertial vertical propagation and catalysing radiation of low-mode
2f0 internal waves. The development of this process is illustrated in figure 1, which
shows snapshots of the potential energy density at t = 5, 10, 20, 40 and 80 inertial
periods. The kinetic energy density is indicated by 10 overlain contours between 0.01
and 0.1 m2 s−2. Throughout the simulation, the kinetic energy remains localized in the
surface layer and in the near field of the barotropic jet. Bulges in the kinetic energy
appearing at t= 20–80 inertial periods reveal the progress of vertical NIW propagation
and show how NIW energy is refractively focused into the region of negative vorticity
(Balmforth, Smith & Young 1998; Lee & Niiler 1998; Balmforth & Young 1999).

The vertical propagation of NIW kinetic energy is attended by an evolving potential
energy field. Its most conspicuous aspect is a signal that extends for the full domain
depth and radiates horizontally from the region of jet–NIW interaction. In the early
stages, the potential energy signal has vertical mode-one structure. The horizontal line
on the panels at t= 5, 10 and 20 inertial periods indicates the horizontal wavelength
λ2f = 2NH/

√
3f0 = 92.4 km of a mode-one 2f0 frequency internal wave. Remarkably,

while this 2f0 signal is generated by nonlinear NIW self-interaction in a small region,
it rapidly radiates to fill a much larger volume without significant NIW activity
(Danioux et al. 2008; Danioux & Klein 2008).

In addition to the low- and intermediate-mode 2f0 signal, narrow beams of potential
energy radiate downwards and outwards from the centre of the domain. These beams
are NIWs propagating at the characteristic angles indicated by the slanting lines on the
snapshots at t= 40 and t= 80 inertial periods. The beams are produced by a scattering
interaction between the surface-concentrated NIW and the jet. The rightward radiating
beams are NIWs escaping the region of negative jet vorticity.

The two-dimensional NIW–jet interaction is thus characterized by at least three
distinct phenomena: trapping of near-inertial energy in regions of negative balanced
vorticity, beam-like radiation of near-inertial energy and emission of 2f0 waves. We
use a multiple space- and time-scale expansion of the Boussinesq equations to
construct a three-component model describing all of these processes.

1.2. Summary of the three-component model
In the three-component model, the horizontal velocity is

u+ iv def= e−if0t L A+ (−∂y + i∂x)ψ + · · · , (1.3)



810 G. L. Wagner and W. R. Young

where A(x, y, z, t) is the NIW envelope and ψ(x, y, z, t) is the QG streamfunction.
The differential operator L in (1.3) is defined below in (1.7), and the dots on the
right-hand side of (1.3) stand for additional contributions to the horizontal velocity:
NIW harmonics, Stokes corrections and ageostrophic flow. The pressure field is

p= f0ψ + if0

2
[e−if0t(∂x − i∂y)A+ e−2if0t2B] + c.c.+ · · · , (1.4)

where B(x, y, z, t) is the 2f0 wave envelope, ‘c.c.’ stands for ‘complex conjugate’ and
the dots indicate unimportant high-order corrections. The vertical velocity w is

w=− f 2
0

2N2
[e−if0t(∂x − i∂y)Az + e−2if0t4Bz] + c.c. (1.5)

The 2f0 contribution in B features prominently in the vertical velocity field, despite its
small contribution to the horizontal velocity.

The system consists of three equations: a wave-averaged QG potential vorticity
equation, the NIW equation and a ‘2f0 equation’ governing the evolution of 2f0
waves. The wave-averaged potential vorticity equation is

qt + J(ψ, q)= 0, (1.6)

where the potential vorticity is

q=
(
∂2

x + ∂2
y︸ ︷︷ ︸

def=1

+ ∂z
f 2
0

N2
∂z︸ ︷︷ ︸

def=L

)
ψ + βy+ i

2f0
J(LA∗, LA)+ 1

4f0
1|LA|2. (1.7)

In (1.6) and (1.7) the operator J(a, b) = axby − aybx is the Jacobian, the inertial of
Coriolis frequency is f = f0+ βy and N(z) is the depth-dependent buoyancy frequency
associated with strong background stratification. The two rightmost terms in (1.7) are
quadratic NIW contributions to the wave-averaged potential vorticity. We assume that
the 2f0 waves are too weak to contribute appreciably to the potential vorticity. The
evolution of the NIW field is described by a generalization of the YBJ equation,

L At + i
2

f01A+ J(ψ, L A)+ iL A
(

1
2
1ψ + βy

)
+ 1

2
L A∗(∂x + i∂y)

2B= 0. (1.8)

Equation (1.8) accounts for NIW dispersion and group propagation, horizontal
advection by balanced flows, refraction by balanced flows and non-uniform planetary
vorticity, and nonlinear NIW–2f0 interaction. The NIW–2f0 interaction term on the
right end of (1.8) is identical to the term introduced by Young, Tsang & Balmforth
(2008) into the YBJ equation to analyse near-inertial parametric subharmonic
instability (PSI); in that work, the NIW–2f0 interaction was implicated in the
production of very small NIW vertical scales.

The evolution of the 2f0 amplitude B is described by

(1+ 13L)Bt + 4if0(1− 3L)B=− 3
2(∂x − i∂y)

2(L A)2. (1.9)

Equation (1.9) describes dispersion and propagation of 2f0 waves and energy transfer
from NIWs via the source term on the right.
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The three-component model, comprising (1.6)–(1.9), describes the coupled
evolution of NIWs, QG flow and near-2f0 internal waves. Like the XV system,
the three-component model conserves two integral quantities: ‘wave action’ and
‘coupled energy’. The wave action is the sum of the NIW kinetic energy and the total
energy of freely propagating near-2f0 waves. The coupled energy is the sum of the
total balanced energy, the near-inertial potential energy, an NIW–β interaction term
and terms associated with the NIW–2f0 interaction.

A striking implication of both the XV and the three-component models is that
NIWs can extract energy from balanced QG flow. This follows from the separation
of two conservation laws for wave action and coupled energy, which together imply
that an increase in NIW potential energy during NIW–flow interaction comes at the
expense of balanced energy. Balanced flow thus loses energy when interacting with
NIWs that consist almost entirely of kinetic energy, and NIW–QG interaction forms
a link between large-scale balanced energy, the energy contained in the internal
wave field, and wave breaking and diapycnal mixing. XV refer to this wave–mean
interaction as ‘stimulated loss of balance’ to distinguish it from spontaneous loss
of balance (Vanneste 2013), emphasizing that it requires externally forced waves
to ‘stimulate’ further production of wave energy at the expense of balanced energy.
Unlike spontaneous wave generation, stimulated wave generation is a potentially
significant energy sink for nearly balanced flows with small Rossby numbers.

Next, in § 2, we introduce the Boussinesq equations and special scaling assumptions,
and define the multiple time and multiple vertical scales required to meet solvability
conditions in the asymptotic derivation. In § 3 we expand the Boussinesq equations
in wave amplitude, deriving the NIW equation as well as the 2f0 equation governing
the evolution of the 2f0 harmonic. In § 4 we apply the wave-averaged contribution to
the QG potential vorticity found by Wagner & Young (2015) to the near-inertial case.
In § 5 we heuristically revise the formal theory derived in §§ 3 and 4 to arrive at the
implementable model of (1.6)–(1.9). In § 6 we derive two conserved integral quantities
from (1.6)–(1.9). In § 7 we compare numerical solutions of a two-dimensional initial
value problem in both Boussinesq and three-component models, and in § 8 we assess
the physical implications of the solutions. We conclude with a discussion of the
significance and implications of the model in § 9.

2. The Boussinesq equations
We use the Boussinesq approximation by defining a constant reference density ρ0

and decomposing the total density into

ρ(x, t)= ρ0

[
1+ g−1

∫ 0

z
N2(z′) dz′ − g−1b(x, t)

]
, (2.1)

where x = (x, y, z) is position and t is time. In (2.1), the resting buoyancy profile
is the vertical integral of the buoyancy frequency N2(z), and b(x, t) is the dynamic
buoyancy perturbation from background. Pressure is decomposed similarly into
−ρ0gz + ρ0P(z) + ρ0p(x, t), where P(z) is the resting hydrostatic pressure and the
dynamic component of pressure is ρ0p.

Using these definitions, the Boussinesq equations are

ut + u · ∇u− fv + px = 0, (2.2)
vt + u · ∇v + fu+ py = 0, (2.3)
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wt + u · ∇w+ pz = b, (2.4)
bt + u · ∇b+wN2 = 0, (2.5)

ux + vy +wz = 0, (2.6)

where u = ux̂ + vŷ + wẑ is the fluid velocity. Subscripts with respect to (x, y, z) or
t denote partial derivatives. We use the β-plane approximation by introducing f (y)=
f0 + βy, where f0 is the local inertial frequency and β is its latitudinal variation.

2.1. Non-dimensionalization and scaling assumptions
We set the asymptotic reduction in motion by non-dimensionalizing the Boussinesq
equations (2.2)–(2.6). We choose a spatial scaling that isolates NIWs at leading order
and a velocity scaling that ensures that the back-rotated velocity and the QG potential
vorticity share the same evolutionary time scale. Specifically, this requires that NIW
dispersion acts on the same time scale as advection and refraction by the balanced
flow. We use a single horizontal length scale, L, and denote the scale of the near-
inertial horizontal velocity with Ũ. The NIW ‘amplitude parameter’

ε
def= Ũ

f0L
(2.7)

is crucial: ε � 1 implies that nonlinear terms are small so that the NIW field is
governed by linear dynamics to leading order.

The amplitude and importance of nonlinearity to balanced-flow evolution are
measured by the Rossby number. We assume that the balanced flow is weak relative
to the NIWs and that Ū= εŨ, where Ū is the characteristic velocity of the balanced
flow. Under this scaling assumption the Rossby number is

Ro def= Ū
f0L
= ε2. (2.8)

The NIW amplitude parameter and Rossby number have superficial similarity but
different physical interpretations. The NIW amplitude can be interpreted as the ratio
between the length scale L and the radius of particle orbits in an inertial circle, Ũ/f0.
The Rossby number, on the other hand, is the ratio of the rotation time scale 1/f0
and advective time scale L/Ū = (ε2f0)

−1. The NIW envelope and the balanced flow
co-evolve on the slow time scale (ε2f0)

−1.
We denote the vertical scale of the NIWs by H̃, and we use Ũ, L and H̃ to non-

dimensionalize the horizontal and vertical velocities,

(u, v)= Ũ (ǔ, v̌), w= H̃Ũ
L

w̌, (2.9a,b)

where non-dimensional variables are distinguished by ˇ . Introducing f0, the local
Coriolis or inertial frequency, and N0, the characteristic magnitude of N(z), we
non-dimensionalize the buoyancy field with

b= (H̃N2
0 Ũ/f0L) b̌. (2.10)

We adopt a geostrophic scaling for the pressure such that

p= f0LŪp̌= εf0LŨp̌. (2.11)
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The inertial frequency is scaled so that

f̌ = 1+ ε2β̌ y̌, (2.12)

where (x, y)= L(x̌, y̌) and

β̌ = βL2

Ū
. (2.13)

Finally, we define an aspect ratio

α
def= εN0

f0
. (2.14)

By assuming α = O(1), we imply that f0/N0 = O(ε) and justify the hydrostatic
approximation in the vertical momentum equation at all relevant orders in the
perturbation theory.

2.2. Multiple scales: time and space
To describe both internal waves and slowly evolving balanced flow, we use the two-
time method with a ‘fast’ time t̃ = f0t and a ‘slow’ time t̄ = ε2f0t. Time derivatives
are mapped according to

∂t 7→ f0(∂ t̃ + ε2∂t̄). (2.15)

We use an Eulerian time average denoted with an overbar and defined as

φ̄(x, t̄) def= 1
T

∫ t+T/2

t−T/2
φ(x, t′) dt′, where

1
f0
� T� L

Ū
, (2.16)

to separate fast and slow flow components. Thus, any field φ can be represented as

φ = φ̄ + φ̃, (2.17)

where φ̄ is the slowly evolving time-mean part and φ̃ is the wavy part with φ̃ = 0.
A multiple-vertical-scale expansion in the vertical is motivated by the disparity in

aspect ratio between NIWs, and both observed 2f0 scales as well as standard QG flow.
Denoting the vertical scale of the NIWs by H̃, the internal wave dispersion relation
implies that internal waves are near-inertial when the Burger number of the wave is
small, or when (

N0H̃
f0L

)2

� 1. (2.18)

On the other hand, the standard QG equations assume that the Burger number of the
balanced flow is of order unity. We use this requirement to define the vertical scale
of the balanced flow, H̄, as

H̄ def= f0L
N0
. (2.19)

We make the scaling assumption that

H̃ = εH̄. (2.20)
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This prescription for H̃ unifies the slow NIW dispersion time scale with the balanced-
flow advection time scale. To capture both vertical scales in the expansion we split
the vertical coordinate into a fast component, z̃, and a slow component, z̄. Under this
two-scale splitting, vertical derivatives become

∂z 7→ H̃−1(∂z̃ + ε ∂z̄). (2.21)

The vertical-scale splitting requires the introduction of a vertical average, which we
define as

φ̂ = 1
H′

∫ z̃+H′/2

z̃−H′/2
φ dz̃′, where H̃�H′� H̄. (2.22)

The increase in complexity incurred by the multiple space-scale expansion is justified
by a systematic explanation of the prominence and impact of the 2f0 harmonic on
NIW evolution.

2.3. Complexifed non-dimensionalized equations
The derivation is greatly simplified by defining the complex horizontal coordinate and
velocity field,

s def= x+ iy and U def= u+ iv. (2.23a,b)
Spatial derivatives are expressed in terms of s and s∗ via

∂s = 1
2(∂x − i∂y), ∂s∗ = 1

2(∂x + i∂y). (2.24a,b)

These imply that 1= 4∂s∂s∗ , and that

ux + vy = Us + U∗s∗ and vx − uy = iU∗s∗ − iUs. (2.25a,b)

Using the scaling assumptions outlined above, and dropping decorations on
non-dimensional variables, the complexified non-dimensional Boussinesq equations
become

U t̃ + iU =−ε(u · ∇U + 2 ps∗)− ε2(Ut̄ +wUz̄ + iβyU), (2.26)
pz̃ = ε (b− pz̄)− ε2α−2[w t̃ + ε(u · ∇w)+ ε2(wwz̄ +wt̄)], (2.27)

b t̃ +wN2 =−ε u · ∇b− ε2(bt̄ +wbz̄), (2.28)
Us + U∗s∗ +wz̃ =−ε wz̄. (2.29)

The bracketed terms in (2.27) are included for completeness, but never appear in the
theory that follows. In terms of complex velocity the advection operators in (2.26) and
(2.28) are

u · ∇= U∂s + U∗∂s∗ +w∂z̃. (2.30)
The system in (2.26)–(2.29) is the basis for our asymptotic derivation.

3. The NIW equation
The NIW equation is derived by developing a perturbation expansion of (2.26)–

(2.29) for ε�1. We begin by expanding u, b and p each in a series in ε. For example,
the complex velocity U has the expansion

U = U0 + ε U1 + ε2 U2 + · · · . (3.1)

We develop (2.26)–(2.29) order by order in ε. For clarity, we express our results
in dimensional variables, although the non-dimensional forms are indispensable for
distinguishing each order in the development.
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3.1. Leading order: NIWs
The leading-order terms in (2.26)–(2.29) are

U0 t̃ + if0 U0 = 0, (3.2)
p0z̃ = 0, (3.3)

b0 t̃ +w0N2 = 0, (3.4)
U0s + U∗0s∗ +w0z̃ = 0. (3.5)

We write the solution to the horizontal momentum equation (3.2) in terms of an NIW
envelope M or A,

U0 = e−if0 t̃ Mz̃ = e−if0 t̃ L̃A, (3.6)

where L̃ is a second-order differential operator,

L̃ def= ∂z̃

(
f 2
0

N2
∂z̃

)
. (3.7)

Both A(x, y, z̃, z̄, t̄) and M = ( f 2
0 /N

2)Az̃ prove useful for confronting the algebra that
ensues. The representation in (3.6) ensures that the leading-order horizontal velocity is
inertial over short times; small deviations in wave field frequency from f0 are captured
by the dependence of M or A on the slow time t̄. The construction in (3.6) also
implies that the vertical average of the NIW horizontal velocity is zero at this order.

With the representation in (3.6), we can integrate the continuity equation (3.5) over
the fast vertical coordinate z̃ to yield

w0 =−e−if0 t̃ Ms − eif0 t̃ M∗s∗ + ŵ0, (3.8)

where the z̃-independent function of integration ŵ0(x, y, z̄, t̃ , t̄) is necessary to ensure
solvability of the perturbation expansion at next order. If ŵ0 is not included in (3.8),
then the O(ε) velocity field cannot satisfy continuity and the boundary conditions. At
O(ε) in (2.26)–(2.29), we find that ŵ0 oscillates on the fast time scale with frequency
2f0 and is forced nonlinearly by NIW horizontal self-advection.

The leading-order buoyancy b0 follows from integration of the buoyancy equation
(3.4) using w0 in (3.8),

b0 = if0(e−if0 t̃ Az̃s − eif0 t̃ A∗z̃s∗)+ b̂0, (3.9)

where as in (3.8) we include the function of integration b̂0(x, y, z̄, t̃ , t̄). The vertical
momentum equation (3.3) implies that the leading-order pressure p0 does not depend
on the fast vertical scale z̃, or that

p0 = p̂0. (3.10)

The leading-order pressure p0 is eventually determined by (3.28) and (3.29) below and
oscillates on a fast time scale with frequency 2f0. An important feature eventually
revealed by this expansion is that the large-vertical-scale 2f0 fields ŵ0, b̂0 and p̂0
appear at leading order in (3.8), (3.9) and (3.28). The magnitudes of these 2f0 fields
follow from the two assumptions that the 2f0 horizontal velocity and vertical scales
are respectively O(ε) and O(ε−1) compared with their near-inertial counterparts. This
scaling produces a description of NIW–2f0 interaction that neglects the complicating
effect of the mean flow ψ on 2f0 evolution.
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3.2. First order: wave-averaged geostrophic balance and 2f0 harmonic
The O(ε) terms in (2.26)–(2.29) are

U1 t̃ + if0 U1 =−2p0s∗ − u0 · ∇U0, (3.11)
p1z̃ = b0 − p0z̄, (3.12)

b1 t̃ +w1N2 =−u0 · ∇b0, (3.13)
U1s + U∗1s∗ +w1z̃ =−w0z̄. (3.14)

These equations describe wave-averaged geostrophic balance and the nonlinearly
forced 2f0 harmonic.

3.2.1. Wave-averaged geostrophic balance
The time average of (3.11)–(3.14) yields the wave-averaged geostrophic balance

conditions. These balance conditions are similar to those in Wagner & Young (2015)
except that the restriction to NIWs means that there is no Stokes pressure contribution.
We show this explicitly by first noting that the nonlinear term on the right-hand side
of (3.11) is

u0 · ∇U0 =J0 + e−2if0 t̃J2 + e−if0 t̃ ŵ0Mz̃z̃, (3.15)

where J0 and J2 are Jacobians defined by

J0
def= ∂(M

∗,Mz̃)

∂(z̃, s∗)
and J2

def= ∂(M,Mz̃)

∂(z̃, s)
. (3.16a,b)

Next, we observe that the horizontal and vertical Stokes drifts, U S and wS, are defined
by

U S def= ξ0 · ∇U0 and wS def= ξ0 · ∇w0, (3.17a,b)

where ξ0= ξ0x̂+ η0ŷ+ ζ0ẑ is the wave particle displacement, defined via ξ0 t̃ = u0 and
ξ̄0 = 0. A direct calculation shows that

if0 U S = u0 · ∇U0 =J0. (3.18)

A similar calculation for the vertical Stokes drift wS shows that

if0wS = if0

N2
u0 · ∇b0 =K∗0 −K0, (3.19)

where K0 is the Jacobian

K0
def= ∂(M

∗,Ms)

∂(z̃, s∗)
. (3.20)

The identity J0s + J ∗0s∗ + K∗0z − K0z = 0 implies that the three-dimensional Stokes
velocity in (3.18) and (3.19) is non-divergent.

Defining the QG streamfunction as

ψ
def= p̄0

f0
, (3.21)

we use the expressions for the Stokes velocities in (3.18) and (3.19) to write the time
averages of (3.11) and (3.13) as

Ū1 + U S = 2iψs∗, (3.22)
w̄1 +wS = 0. (3.23)
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Equation (3.22) is the wave-averaged geostrophic balance condition for QG flow
evolution in a field of strong NIWs. This balance condition lacks the Stokes pressure
correction term that appears in the more general balance condition expressed by (4.38)
in Wagner & Young (2015). From the leading-order vertical momentum equations
(3.3), the pressure p0, and therefore ψ , does not depend on the fast vertical coordinate
z̃.

3.2.2. The 2f0 harmonic
Using the two-time decomposition in (2.17), we write the wavy parts of the first-

order equations (3.11), (3.12) and (3.14),

Ũ1 t̃ + if0 Ũ1 + 2p̃0s∗ =−e−2if0 t̃J2 − e−if0 t̃ ŵ0Mz̃z̃, (3.24)

p̃1z̃ = b̃0 − p̃0z̄, (3.25)

b̂0 t̃ + ŵ0N2 = 0, (3.26)

Ũ1s + Ũ∗1s∗ + w̃1z̃ =−w̃0z̄, (3.27)

where with (3.26) we include the vertically averaged leading-order buoyancy equation.
It is (3.26), rather than the wavy part of (3.13), that describes the part of the 2f0
buoyancy field with large vertical scale. It should be noted that the final term on the
right-hand side of (3.24) is not resonant because ŵ0 oscillates with 2f0 frequency.

The system in (3.24)–(3.27) provides a complete description of the 2f0 harmonic
of the NIW field. Importantly, part of this 2f0 harmonic response does not depend
on the fast vertical coordinate z̃. To isolate the slowly vertically varying part of the
2f0 harmonic we average (3.24)–(3.27) over z̃ and wrangle the resulting system into
a single equation. We leave the details to appendix A and note the final result. Using
the notation

p̃0 = if0[e−2if0 t̃ B(x, y, z̄, t̄)− e2if0 t̃ B∗(x, y, z̄, t̄)], (3.28)

we find that B solves

if0(1− 3L̄)B=− 3
2∂

2
s M̂2

z . (3.29)

The operator L̄ is a second-order differential operator analogous to L̃ but defined in
terms of the slow vertical scale z̄,

L̄ def= ∂z̄
f 2
0

N2
∂z̄. (3.30)

The ‘2f0 equation’ in (3.29) describes forced 2f0 oscillations with a much larger
vertical scale than the near-inertial fields. Because of this vertical-scale discrepancy,
the vertical velocity of the 2f0 harmonic appears alongside the NIW vertical velocity at
leading order in (3.8). As it stands, however, (3.29) cannot describe freely propagating
2f0 waves and thus cannot describe the waves that produce the prominent potential
energy signal in figure 1. We modify (3.29) heuristically in § 5 to describe the freely
propagating parts of B, which roughly satisfy the 2f0 dispersion relation and thus
obey 1B≈ 3L B.

Continuing with the derivation of the NIW evolution equation, we use the
expression for p̃0 in (3.28) to integrate (3.24) for Ũ1. The full U1 field is

U1 = 2iψs∗ + if−1
0 J0 + e−2if0 t̃ (2Bs∗ − if−1

0 J2)+ 2
3 e2if0 t̃ B∗s∗ + · · · , (3.31)
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where the dots indicate terms proportional to e−3if0 t̃ and eif0 t̃ . Finally, we find p1− p̂1
by subtracting the vertical average from (3.25), using (3.9) and integrating in z̃ to find

p1 − p̂1 = if0(Ase−if0 t̃ − A∗s∗e
if0 t̃ ). (3.32)

We now have U1, ŵ0 and p1, and are ready to proceed to the second-order system.

3.3. Second order: an NIW amplitude evolution equation

The O(ε2) terms in the horizontal momentum equation (2.26) are

U2 t̃ + if0 U2 =−u0 · ∇U1 − u1 · ∇U0 − U0t̄ − iβyU0 − 2p1s∗ −w0 U0z̄. (3.33)

Here, we finally apply the solvability condition arising from the introduction of
multiple time scales. The solvability condition prevents the disordering of terms that
would result from secular growth in U2: we isolate resonant forcing terms on the
right of (3.33) and set them collectively to zero. The amplitude equation yielded by
this procedure governs the dependence of the NIW envelope A on the slow time t̄.
We note that the vertical average of (3.33) has no resonant terms.

We construct the amplitude equation piece by piece, starting at the far-right end
of (3.33) and proceeding to the left. The final term w0 U0z̄ in (3.33) has no parts
proportional to e−if0 t̃ and so does not contribute to the amplitude equation. The next
three terms from the left side of (3.33) are

U0t̄ + iβyU0 + 2∂s∗(p1 − p̂1)= e−if0 t̃ (L̃At̄ + iβy L̃A+ 2if0Ass∗)+NRT, (3.34)

where NRT stands for ‘non-resonant terms’. Next in line is

(u1 · ∇)U0 = e−if0 t̃

[
2i
∂(ψ,Mz̃)

∂(s∗, s)
− U SMz̃s − U S∗Mz̃s∗ −wSMz̃z̃

]
+NRT. (3.35)

It should be noted that to find (3.35) we need only consider the time-mean velocity
ū1, since U0 is proportional to e−if0 t̃ . The first term on the right of (3.33), involving
the zero-order advection of the first-order velocity, is the most complicated. Carefully
compiling the terms, we find

(u0 · ∇)U1 = e−if0 t̃ (Mz̃U1s −MsU1z̃)+ eif0 t̃ (M∗z̃ U1s∗ −M∗s∗U1z̃)+ ŵ0U1z̃, (3.36)

= e−if0 t̃

[
∂(M, Ū1)

∂(z̃, s)
+ i

f0

∂(J2,M∗)
∂(z̃, s∗)

+ 2M∗z̃ Bs∗s∗

]
+NRT. (3.37)

Adding (3.35) to (3.37) yields

(u1 · ∇)U0 + (u0 · ∇)U1 = e−if0 t̃

[
2i
∂(ψ,Mz̃)

∂(s∗, s)
+ 2iψss∗Mz̃ + 2M∗z̃ Bs∗s∗

]
+NRT. (3.38)

The absence of terms cubic in M is a remarkable aspect of (3.38): all 16 cubic M
terms in (3.35) and (3.37) conspire in collective cancellation. This simplification was
previously noted by Falkovich, Kuznetsov & Medvedev (1994) and Zeitlin, Reznik &
Ben Jelloul (2003), and is the reason why no cubic terms appear in XV.

It is thus notable that our expansion identifies a surviving ‘honorary’ cubic term,
proportional to M∗z̃ Bs∗s∗ , in (3.38). This new term results from the interaction of NIWs
with both forced and freely propagating 2f0 waves. The requirement for 2f0 fields
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arises when the first-order continuity equation (3.27) is averaged over the small NIW
vertical scale: if the vertical average of U1s + U∗1s∗ is non-zero, for example, then
continuity can only be satisfied if U1 is permitted its own independent evolution. This
solvability issue is addressed by introducing the 2f0 fields ŵ0, b̂0 and p̂0 at leading
order in (3.8) and (3.9). This is the non-obvious step that ultimately produces the new
term in (3.38).

The amplitude equation is then obtained from the sum of (3.34) and (3.38). In
Cartesian coordinates and in terms of A, the amplitude equation is

L̃At̄ + if0

2
1A+ J(ψ, L̃A)+ i L̃A

(
1
2
1ψ + βy

)
+ 1

2
L̃A∗(∂x + i∂y)

2B= 0. (3.39)

The amplitude equation (3.39) is the YBJ equation except for the final 2f0 interaction
term on the left-hand side. The 2f0 interaction term is identical to the one found by
Young et al. (2008) in their analysis of energy transfer from prescribed 2f0 motions
to NIWs by PSI.

4. The NIW-averaged available potential vorticity
Wave-averaged QG flow is governed by a wave-averaged potential vorticity equation

(Bühler & McIntyre 1998; Wagner & Young 2015),

qt̄ + J(ψ, q)= 0, (4.1)

where ψ is defined through the balance condition (3.22) and q is the wave-averaged
available potential vorticity. Wagner & Young (2015) give a number of expressions
for q. Here, we use

q def= (1+ L)ψ + βy+ J(u0, ξ0)+ J(v0, η0)+ f0J(ξ0, η0)+ 1
2(ξ0iξ0j),ij︸ ︷︷ ︸

def=qw

. (4.2)

In (4.2) we define the wave contribution to the available potential vorticity, qw, in
terms of the leading-order wave particle displacement ξ0 = ξ0x̂ + η0ŷ + ζ0ẑ defined
through ξ0 t̃ = u0.

In the present multiple-scale theory, ψ and q are both time-averaged and vertically
averaged quantities. Consistency then demands that qw in (4.2) be vertically averaged
as well. With the leading-order wave expressions (3.6) and (3.8) and using M, a bit
of algebra leads to

qw =− 1
f0
(M∗ss∗Mz̃z̃ − 2Mz̃s∗M∗z̃s +Mss∗M∗z̃z̃). (4.3)

This is the expression for qw found by XV.
We then take the vertical average of qw, which yields a number of representations

via integration by parts in z̃, such as

q̂w = − 1
f0
(M̂∗ss∗Mz̃z̃ − 2M̂z̃s∗M∗z̃s + M̂ss∗M∗z̃z̃), (4.4)

= i
2f0

̂J(M∗z̃ ,Mz̃)+ 1
4f0
1 |̂Mz̃|2. (4.5)

We take the second form, in (4.5), which is the form needed to furnish the three-
component model in (1.6)–(1.9) with a coupled wave–mean-energy conservation law.
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5. Remodelling
The formally derived model comprising (3.39), (4.2), (4.5) and (3.29) is a first draft

that we heuristically revise to obtain the simpler and well-posed system in (1.6)–
(1.9). This remodelling addresses two concerns with the multiple-scale formulation.
First, the multiple vertical scales and vertical averages in (4.5) and (3.29) complicate
computations. Second, the 2f0 equation in (3.29) cannot be solved when the NIW field
and its 2f0 harmonic interact resonantly, which occurs when the nonlinear forcing on
the right-hand side of (3.29) has spectral components in the null space of the operator
1− 3L on the left.

To address the first concern we reconsolidate vertical scales and eliminate vertical
averaging from equations (4.5) and (3.29). Although this modification admits spurious
small vertical scales into ψ and B, these small-scale parts of ψ and B contain little
energy due to the ‘self-averaging’ Helmholtzian inversions that determine ψ and B
through (4.2) and (3.29). In particular, energy is transferred most effectively to B
at resonant or near-resonant spectral components of (3.29) and (5.3). These spectral
components lie close to the 2f0 dispersion relation and have large vertical scale relative
to NIWs.

After consolidation of scales and dismissal of vertical averages the potential vorticity
is given in terms of ψ and wave-averaged properties as

q= (1+ L)ψ + i
2f0

J(LA∗, LA)+ 1
4f0
1|LA|2, (5.1)

and the NIW equation is

L At + i
2

f01A+ J(ψ, L A)+ iL A
(

1
2
1ψ + βy

)
+ 1

2
L A∗(∂x + i∂y)

2B= 0. (5.2)

In (5.2) above, L= ∂z f 2
0 /N

2 ∂z is the operator originally defined in (1.7) in terms of
the single vertical scale z. The evolution of q in (5.1) is governed by the potential
vorticity equation in (1.6).

The second issue regarding the non-invertibility of 1 − 3L and the description of
freely propagating 2f0 waves is addressed by applying the map ∂t 7→ −2if0 + ∂t̄ to
(3.24)–(3.27) prior to deriving (3.29). This procedure installs a time derivative in the
2f0 evolution equation (3.29) and fixes its resonance problem. We leave the details for
appendix A and report the resulting modified 2f0 equation:

(1+ 13L)Bt + 4if0(1− 3L)B=− 3
2(∂x − i∂y)

2(L A)2. (5.3)

Non-dimensionalizing (5.3) in the manner of § 2.1 reveals that (1 + 13L)Bt is ε2

smaller than the rest of (5.3). The small term (1+ 13L)Bt becomes important under
conditions of near resonance when 4if0(1− 3L)B is relatively small.

The expansion of ∂t used to derive (5.3) is an application of the ‘method of
reconstitution’ (Roberts 1985). Reconstitution successfully improves many asymptotic
expansions, including the Navier–Stokes equations. Here, reconstitution of 2f0
dynamics by addition of the high-order term (1+ 13L)Bt empowers (5.3) to describe
freely propagating 2f0 waves.

6. Conservation laws
Like XV, we find that the wave-averaged system (1.6)–(1.9) conserves two integral

quantities, which we call ‘wave action’ and ‘coupled energy’.
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6.1. Wave action
The first conservation law follows from the wave equations (1.8) and (1.9). We
multiply (1.8) with (1/2)L A∗, add the complex conjugate and integrate over the
domain. Using the 2f0 equation (5.3), and a liberal application of integration by parts,
we find

d
dt

∫
1
2
|L A|2 + 1

6
|∇B|2 + 13f 2

0

6N2
|Bz|2 dV = 0. (6.1)

The appearance of the B terms in this first conservation law is a consequence of the
time derivative in the 2f0 equation (5.3) and corresponds to the total energy in the
freely propagating part of the near-2f0 wave field. The conservation law (6.1) thus
implies that resonant generation of propagating 2f0 waves extracts near-inertial kinetic
energy.

6.2. Coupled energy
The second conserved quantity is a wave–mean coupled energy. We derive the
associated conservation law by multiplying the potential vorticity equation (4.1) with
ψ and integrating over the domain. The Jacobian term ψ J(ψ, q) can be written as
an exact derivative and integrates to zero. Applying integration by parts, we are left
with

dEψ
dt
=
∫
ψqw

t dV, (6.2)

where qw is the wave potential vorticity defined in (4.2) and

Eψ
def=
∫

1
2
|∇ψ |2 + 1

2
f 2
0

N2
ψ2

z dV (6.3)

is the total balanced QG energy. Next, we multiply (1.8) by iL A∗t /2f0, add the
complex conjugate and integrate over the domain to obtain

dEf

dt
=−

∫
ψqw

t dV − i
2f0

∫
B∗∂t∂

2
s (L A)2 − B∂t∂

2
s∗(L A∗)2 dV, (6.4)

where

Ef
def=
∫

f 2
0

4N2
|∇Az|2 + βy

2f0
|L A|2 dV (6.5)

is the sum of the NIW potential energy and an action-like term associated with the
β-effect. The first term on the right of (6.4) corresponds to the term on the right of
(6.2) and will cancel when these equations are added. Substitution of the 2f0 equation
(1.9) and its complex conjugate into the second integral on the right of (6.4) followed
by persistent integration by parts produces

dE2f

dt
= i

2f0

∫
B∗∂t∂

2
s (L A)2 − B ∂t∂

2
s∗(L A∗)2 dV, (6.6)

where

E2f
def=
∫

i
12f0
[B(1+ 13L)B∗t − B∗(1+ 13L)Bt] − 1

3
|∇B|2 + f 2

0

N2
|Bz|2 dV, (6.7)

=
∫

i
8f0
[B∗(∂x − i∂y)

2(L A)2 − B(∂x + i∂y)
2(L A∗)2] + 1

3
|∇B|2 − f 2

0

N2
|Bz|2 dV. (6.8)
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An additional substitution of (1.9) and its complex conjugate transforms equation (6.7)
into (6.8). The conservation of coupled energy emerges from the combination of (6.2),
(6.4) and (6.6),

d
dt
(Eψ + Ef + E2f )= 0. (6.9)

The conservation law in (6.9) is identical to XV’s conservation law except for the
addition of the E2f term. Equation (6.9) is the analogue of a conservation law found
by Danioux, Vanneste & Bühler (2015) that relates the evolution of NIW potential
energy to advection and refraction by steady geostrophic flows.

A thought experiment due to XV illuminates an important implication of (6.9).
Envision the rapid and stormy deposition of a horizontally extensive surface-
concentrated current in a region of geostrophic turbulence. As the storm passes,
the unbalanced current develops into a surface-concentrated NIW that is almost
horizontally uniform, and therefore has little potential energy, and thus Ef ≈ 0. Over
subsequent inertial periods, NIW refraction and advection by the geostrophic flow
drives the creation of near-inertial horizontal scales and potential energy, which leads
to vertical propagation of a refracted NIW signal and the generation of 2f0 internal
waves. Because the wave action in (6.1) and coupled energy in (6.9) are distinct and
independent conservation laws, the total NIW and 2f0 wave energy increases in this
process at the sole expense of energy in the geostrophic flow. The role of E2f in (6.9)
is unfortunately obscure in this thought experiment, although the diagnosis of (6.9)
presented in figure 7 below shows that the effect is minor in some cases.

7. Comparison of the three-component model and the Boussinesq equations
To build confidence in the heuristic and asymptotic approximations used to develop

the three-component model, we compare numerical solutions of a two-dimensional
initial value problem in the three-component model and the Boussinesq equations. The
initial problem is similar to that shown in figure 1, in which a surface-concentrated
NIW interacts with a barotropic balanced velocity field. In addition to solutions
intended for direct comparison, we compute solutions to a two-component model
without 2f0 dynamics, and a three-component model with the PSI-like part of the
NIW–2f0 interaction removed. The physical implications of the numerical solutions
are discussed in § 8.

7.1. A surface-concentrated NIW in random barotropic flow
The initial value problem involves the interaction of a surface-concentrated NIW with
random barotropic balanced flow. The two-dimensional physical domain is bounded by
rigid lids in z with height H= 4 km and is periodic in x with width L= 800 km. The
stratification is uniform, with buoyancy frequency N = 2× 10−3 s−1, and the inertial
frequency is f0 = 10−4 s−1 = N/20, with β = 0. As for the problem considered in § 1,
the NIW initial condition is

L A(x, z, 0)= u(x, z, 0)=U0 exp(−z2/2h2), (7.1)

with h = 100 m. We consider initial NIW surface velocities of U0 = 0.4, 0.2 and
0.1 m s−1.

The initial balanced v velocity is

ψx(x, z, 0)= v(x, z, 0)= V0

14∑
n=4

(
k4

kn

)2

cos(knx+ φn), (7.2)
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FIGURE 2. (Colour online) Comparison of wave speed in numerical solutions to the three-
component and Boussinesq models. (a,b) The x dependence of the initial balanced velocity
v (a) and the balanced vorticity normalized by f0, vx/f0 (b). (c–h) The wave speed defined
in (7.8) at t = 10, 40 and 80 inertial periods in the Boussinesq model (c,e,g) and the
three-component model (d, f,h). The initial NIW surface velocity is U0 = 0.4 m s−1.

where kn
def= 2πn/L and the φn are random phases between 0 and 2π for each

component of the geostrophic flow. We choose V0 = 0.1 m s−1 for all simulations.
This produces a maximum velocity of max(v) ≈ 0.2 m s−1, a maximum Rossby
number of max(vx)/f0 ≈ 0.1 and a root-mean-square Rossby number of r.m.s.(vx)/

f0 ≈ 0.05. The balanced flow and its associated vorticity field are plotted in
figures 2(a,b)–4(a,b).

The numerical solutions we report are listed in table 1. We choose simulation
parameters both for ease of numerical integration and for consistency with oceanic
scenarios. In particular, V0= 0.1 m s−1 leads to ‘reasonable’ NIW vertical propagation
in 10 or 20 inertial periods; smaller values of V0 lead to slower vertical propagation.
It should be noted, however, that V0= 0.1 m s−1 violates assumptions made in § 2 to
justify the asymptotic derivation of the three-component model: the expansion assumes
that Ū/Ũ= H̃/H̄= ε� 1. In the following simulations, H̃/H̄=πh/H= 0.08� 1 while
Ū/Ũ= V0/U0 ranges between 0.25 and 1, so that the balanced flow seems to be too
strong given that the non-dimensionalization in § 2.1 assumes H̃/H̄ ∼ Ū/Ũ = ε � 1.
Nevertheless, we find generally good agreement between the predictions of the
three-component model and full Boussinesq solutions. Other calculations with V0

reduced to 0.025 m s−1 not shown here also validate the three-component model.
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U0 (m s−1) Resolution Model(s) Notes

0.4 1× and 2× Boussinesq and three-component model
0.4 1× Two-component model with B 7→ 0 ‘no 2f0’
0.2 1× Boussinesq and three-component model
0.2 1× Two-component model with B 7→ 0 ‘no 2f0’
0.2 1× Equations (7.3), (7.5) and (7.4) with BxxL A∗ 7→ 0 ‘no PSI’
0.1 1× Boussinesq and three-component model

TABLE 1. Parameters and models for the numerical simulations reported in §§ 7 and 8.
A resolution of ‘1×’ is nx × nz = 1024 × 2048, and ‘2×’ is twice that. In all runs
ψq

x = v(t= 0) is given by (7.2) with V0 = 0.1 m s−1.

We note finally that that our two-dimensional computations do not test all aspects
of the three-component model: with ∂y= 0 the advective terms J(ψ, L A) and J(ψ, q)
vanish and the available potential vorticity (Wagner & Young 2015) q does not
evolve from its initial distribution. The two-dimensional simulations reported here
are interesting primarily as a test of the nonlinear NIW–2f interaction and the
associated production of small vertical scales. Probing of the advective terms requires
either three-dimensional solutions like those in Danioux et al. (2008) or solutions of
the two-dimensional model introduced in § 6.2 of XV.

7.2. Methods
In two dimensions, the APV equation (1.6) reduces to qt = 0 and implies that q
is constant. We decompose the balanced streamfunction into ψ(x, z, t) = ψq(x, z) +
ψw(x, z, t), where

(∂2
x + L)ψq = q and (∂2

x + L)ψw =− 1
4f0
∂2

x |L A|2. (7.3a,b)

Like q, ψq is constant in time and is determined by the initial condition. Because
L A is initially uniform, we have ψq = ψ(t = 0) and thus ψq

xx = vx(t = 0). With this
decomposition the two-dimensional three-component system becomes

L At + i
2

f0Axx + i
2
(ψq

xx +ψw
xx)L A+ 1

2
BxxL A∗ =−D(L A), (7.4)

(∂2
x + 13L)Bt + 4if0(∂

2
x − 3L)B+ 3

2
∂2

x (L A)2 =−D(L B), (7.5)

where the linear ‘hyperdiffusion’ operator

D def= ν
[(

δx
δz

)2

∂2
x + ∂2

z

]8

(7.6)

helps to ensure numerical stability. In (7.6) ν is the hyperviscosity and (δx, δz) is the
resolution in (x, z). We set ν = 106 m16 s−1 for all simulations reported here and find
that the fractional energy lost to dissipation is negligible.

Equations (7.3)–(7.5) are solved with a pseudospectral method by decomposing A
and B into the constant-N vertical modes cos(nπz/H) in z, and Fourier modes in x.
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Fast Fourier transforms are used for vertical and horizontal modal projections. Time
integration of (7.4) and (7.5) is performed with the exponential time differencing
method described by Cox & Matthews (2002), Kassam & Trefethen (2005) and
Grooms & Julien (2011). The exponential time differencing method is crucial
for integrating (7.4) and (7.5) efficiently due to the stiffness generated by both
hyperdiffusion at small scales and the term (∂2

x − 3L)B in (7.5) at large scales.
A subtlety of the vertical mode decomposition of A emerges because we set the

barotropic vertically uniform modes of A to zero. For the vertically uniform and
x-dependent parts of A, this helps to ensure that w0 in (3.8) vanishes at the top and
bottom boundaries. However, the vertically and horizontally uniform part of A does
not have this constraint: this ‘domain mode’ corresponds to a pure inertial oscillation
with no spatial structure or evolution that exactly solves the volume-integrated
Boussinesq equations in (2.2)–(2.6). The domain mode might be regarded as a covert
and constant ‘fourth component’ that can be eliminated by posing an initial condition
with no net momentum. In the results presented here the complex velocity of the
domain mode is e−if0t(HL)−1

∫
L A(x, z, 0) dx dz, where L A(x, z, 0) is the initial NIW

amplitude given in (7.1). Because the domain mode is included in our Boussinesq
solutions, we add it to the horizontal velocity of the numerical solution of (7.4) and
(7.5) shown in figures 2 and 8. The domain mode makes a small but discernible
impact on the solution at t= 10 in figure 2.

The non-hydrostatic Boussinesq equations in (2.2)–(2.6) with β = 0 are solved with
the model of Winters et al. (2004), which employs a pseudospectral method with
Fourier horizontal modes, sine vertical modes for w, b, cosine vertical modes for u, v,
and an integrating factor method with a third-order Adams–Bashforth scheme for time
stepping.

We use the same order of hyperdiffusion for the three-component and Boussinesq
models. Non-exhaustive trial and error indicates that our three-component code is
stable with time steps at least 10 times larger than those demanded by Winters’
Boussinesq model. The simulations reported here use 1024 Fourier modes in x and
2048 vertical cosine modes in z. To test the dependence on resolution, we ran
simulations with double the resolution for U0 = 0.4 m s−1 in both the Boussinesq
and three-component models. The results are almost identical for the two resolutions.

7.3. Points of comparison
We use the horizontal velocity, vertical velocity and domain-integrated vertical kinetic
energy to compare the Boussinesq and three-component models. Because v is initially
balanced, the unbalanced part of v is approximately isolated with

δv(x, z, t)= v(x, z, t)− v(x, z, 0). (7.7)

On the other hand, u is unbalanced because py = 0. We thus define the unbalanced
horizontal ‘wave speed’ as

wave speed def=
√

u2 + δv2. (7.8)

The wave speed in (7.8) includes NIW and 2f0 components as well as a much smaller
wave-induced mean component. In figure 2, we compare the wave speed from the
Boussinesq solution with |Ũ | ≈ |U0 + Ũ1| diagnosed from the three-component
solution, where U0 = e−if0tL A and Ũ1 is the wavy part of (3.31). The comparison is
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FIGURE 3. (Colour online) Comparison of the vertical velocity in numerical solutions with
the Boussinesq and three-component models. (a,b) The x dependence of the initial v (a)
and vx/f0 (b). (c–h) The vertical velocity w at t= 10, 40 and 80 inertial periods for the
Boussinesq model (c,e,g) and the three-component model (d, f,h). The initial NIW surface
velocity is U0 = 0.4 m s−1.

made at t= 10, 40 and 80 inertial periods. The initial NIW magnitude in figure 2 is
U0 = 0.4 m s−1, and the initial balanced barotropic v and local Rossby number vx/f0

are plotted in (a) and (b).
The wave speed shown in figure 2 indicates good agreement between the

three-component model and the Boussinesq equations. A close inspection of the fields
is required to discern differences that arise between the two models at late times.
It is our consistent experience that the wave speed field is well estimated by the
three-component model for the two-dimensional initial value problems examined here;
we therefore focus the following discussion on the more interesting and worst-case
comparison of vertical velocity.

The vertical velocities in the Boussinesq and three-component solutions are
compared in figures 3 and 4 for initial NIW magnitudes of U0 = 0.4 and 0.2 m s−1.
Vertical velocity is plotted from (c,d) to (g,h) at t = 10, 40 and 80 inertial periods.
For both cases, the agreement is good at t = 10 inertial periods but degrades
progressively thereafter. Conspicuous aspects of the Boussinesq solution absent
from the three-component solution are features with small horizontal scales and steep
characteristic angles. These features are especially prominent in figure 3 for the most
nonlinear case with U0 = 0.4 m s−1 at t= 40 and 80 inertial periods.

We dissect this failure of the three-component model in figure 5, which compares
vertical kinetic energy (VKE) spectra between the three-component and Boussinesq
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FIGURE 4. (Colour online) Like figure 3 but with initial NIW surface velocity
U0 = 0.2 m s−1. The agreement between the Boussinesq and three-component models is
better than for U0 = 0.4 m s−1.

models for U0 = 0.4 m s−1 at t = 10 and 40 inertial periods. The five lines indicate
internal wave frequencies based on the linear dispersion relation; proceeding clockwise
from the vertical axes these frequencies are 1.01f0, 1.08f0, 2f0, 3f0 and 4f0, with
the dashed line corresponding to 2f0. The dynamics are clear: in the Boussinesq
simulations, substantial VKE leaks into higher harmonic frequencies 3f0 and 4f0. By
t= 40 inertial periods, the fraction of VKE contained in frequencies greater than 2.8f0
is 49 %. This transfer of VKE to higher harmonics decreases with U0: for U0 = 0.2
and 0.1 m s−1, the fraction is 10 % and just over 1 % respectively at t = 40 inertial
periods.

The effect of the energy transfer to NIW harmonics on total VKE is demonstrated
in figure 6, which shows the evolution of total VKE,

∫
w2/2 dx dz, for (a) U0 =

0.4 m s−1 and (b) U0 = 0.2 m s−1. Four models are considered: Boussinesq (solid
lines), three-component model (dashed lines), a two-component model that neglects
2f0 (dash-dotted lines), and a modification of the three-component model with PSI
suppressed by removing BxxL A∗ from the NIW equation (7.4) (dotted line, figure 6(b)
only). The three-component model underestimates the amplitude of the VKE, having
54 % of the Boussinesq solution at t = 40 inertial periods and 43 % of the total at
t= 80 inertial periods. The ‘extra’ Boussinesq VKE is thus similar to that contained
in frequencies greater than 2.8f0, implying that it originates in a transfer of horizontal
NIW kinetic energy to high NIW harmonics not accounted for in the three-component
model. It is not surprising that this transfer to 3f0 and 4f0 is strongest in the most
nonlinear case with U0 = 0.4 m s−1.
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FIGURE 5. (Colour online) Snapshots of VKE spectral components, |w̆|2, where w̆ denotes
the Fourier and vertical mode transform of w, for U0 = 0.4 m s−1 at t = 10 and 40
inertial periods. The spectral components are normalized by the total Boussinesq VKE, and
horizontal modes include energy from both positive and negative horizontal wavenumbers.
The five lines show the linear dispersion relation for five internal wave frequencies;
proceeding clockwise from the vertical axes these frequencies are 1.01f0, 1.08f0, 2f0, 3f0
and 4f0, with the dashed line corresponding to 2f0. By t= 40 inertial periods, 49 % of the
Boussinesq VKE is in frequencies higher than 2.8f0.

For the case U0 = 0.2 m s−1 the three-component model correctly estimates the
amplitude, but not the phase of the VKE. Unsurprisingly, given the impact of NIW–
harmonic interactions on the VKE, the two-component solutions with B 7→ 0 and thus
no 2f0 cannot capture the evolution of the VKE for either U0 = 0.4 or 0.2 m s−1. In
figure 6(b), the suppression of PSI leads to an unrealistic accumulation of VKE in
2f0 motions starting at approximately t = 20 inertial periods. This indicates that the
transfer of energy from 2f0 back to NIWs must be accounted for to accurately capture
VKE evolution.

7.4. Summary
The comparison presented in this section shows that the three-component model well
describes NIW evolution and nonlinear NIW–2f0 interaction. That the three-component
model describes NIW evolution in the cases shown here is not too surprising, since
it is probably driven by a linearized YBJ-type flow-induced refraction. The success
of the three-component model in describing NIW–2f0 interaction is more surprising
and vindicates the heuristic derivation of 2f0 dynamics. On the other hand, the model
grossly underestimates the vertical velocity magnitude when the NIWs are strong,
which follows from the neglect of NIW harmonics higher than 2f0. We stress that
this two-dimensional comparison cannot test whether the three-component model
correctly captures the impact of NIWs on balanced flow evolution.
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∫

w2/2 dx dz, for (a) U0= 0.4 m s−1

and (b) U0 = 0.2 m s−1. Results are diagnosed from the Boussinesq model (solid
lines), the three-component model (dashed lines), a ‘no 2f0’ two-component model with
B 7→ 0 (dash-dotted lines) and a ‘no PSI’ three-component model with the term BxxL A∗
removed from the NIW equation (7.4) (dotted line in (b) only). Black colours are used
for (a) U0 = 0.4 m s−1 and blue colours for (b) U0 = 0.2 m s−1 here and in figures 7
and 9.
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FIGURE 7. (Colour online) The evolution of (a) wave action and (b) coupled energy
in the three-component system with initial NIW velocity in (7.1) and U0 = 0.4, 0.2
and 0.1 m s−1, and initial balanced velocity in (7.2) with V0 = 0.1 m s−1, as shown in
figures 2–4.

8. Energy transfer and production of small vertical scales

In this section we continue to explore the initial value problem of § 7 by looking at
the energy transfer between the three flow components and the surprising role played
by 2f0 in the evolution of the smallest vertical scales.
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model with B 7→ 0 and thus no 2f0 waves. The snapshots are taken at t = 80 inertial
periods and comprise a portion of the full domain shown in figure 2.

8.1. Energy transfer between flow components
The two conserved quantities in the three-component model are wave action and
coupled energy defined in (6.1) and (6.9) and plotted in figure 7(a,b). Figure 7(a)
illustrates the transfer between NIW kinetic energy and the total energy of the 2f0
field, defined respectively as

Af =
∫

1
2
|L A|2 dx dz and A2f =

∫
1
6
|Bx|2 + 13f 2

0

6N2
|Bz|2 dx dz. (8.1a,b)

Figure 7(a) shows the components of wave action change δAf (t)
def= Af (t) − A (0)

and A2f . Figure 7(a) also shows the very small change in total wave action
δA = δAf +A2f due to hyper-dissipation with dotted lines. All curves are normalized
by the initial wave action A (0), which is equal to the kinetic energy in the
near-inertial initial condition. Three cases corresponding to different initial amplitudes
of the NIW are shown: U0= 0.1, 0.2 and 0.4 m s−1 in red, blue and black. The action
transferred from Af to A2f increases initially to a maximum value and thereafter
decays to a constant asymptotic value as t→∞. Although the short-term maximum
transfer increases with the initial NIW amplitude U0, the fraction as t → ∞ is
independent of U0 and indicates that less than 1 % of the near-inertial action is
ultimately transferred to the 2f0 field.

Figure 7(b) shows the evolution of δEψ(t)
def= Eψ(t)− E (0), Ef and E2f following the

definitions in (6.3), (6.5) and (6.7) respectively. All energies are normalized by the
initial near-inertial kinetic energy A (0), thus revealing an uncanny correspondence
between cases: the energy transferred from balanced flow to NIWs is a constant
fraction of the initial NIW kinetic energy, Af (0).
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8.2. The 2f0 motions are a stepping stone to small vertical scales
The evolution of A2f in figure 7(a) is unspectacular and suggests that NIW–2f0
interaction is not important because at most a mere 3 % of the initial NIW kinetic
energy is transferred to 2f0 when U0 = 0.4 m s−1. Yet the possibility for a PSI-type
energy transfer from 2f0 to NIW hints that the inclusion of 2f0 and nonlinear NIW–2f0
interaction may be necessary to capture the production of small NIW vertical scales.

We isolate the effect of this process by computing a ‘no 2f0’ solution of (7.3) and
(7.4). In this solution we set B 7→ 0, thus removing 2f0 waves and the 2f0-mediated
transfer of energy. Figure 8 gives a qualitative impression of the results, where
the wave speed (a–c) and wave shear magnitude (d–f ) are plotted for three model
solutions with U0 = 0.4 m s−1: Boussinesq (a,d), three-component model (b,e) and
the two-component ‘no 2f0’ solution of (7.3) and (7.4) with B 7→ 0 (c, f ). Both
the Boussinesq and the three-component results have small scales in the vertical
velocity which are lacking when 2f0 is removed, and thus must be created by
nonlinear NIW–2f0 interaction. Without 2f0 the magnitude of the vertical shear is
also underestimated near (x, z) = (−0.1, 40) km. At the same time, the overall flow
structure agrees between the three models.

A more quantitative estimate of small vertical scales is provided by the metric Ri†(t),
which measures the smallest Richardson numbers and thus the potential for wave
breaking and mixing were such processes resolved. Here, Ri† is defined as the average
of the smallest 0.1 % of Richardson numbers:

Ri†(t) def=mean [smallest 0.1 % of Ri values], where Ri def= N2 + bz

u2
z + v2

z

. (8.2)

The evolution of Ri† normalized by its initial value is shown in figure 9 for
the cases U0 = 0.4 and 0.2 m s−1. Results are compared between the Boussinesq,
three-component and two-component models. The comparison reveals that small
values of Ri† and thus small vertical scales are produced by at least two distinct
physical mechanisms: Ri† first decreases to a minimum value between t= 15 and 20
inertial periods and rises gradually thereafter. The early-time agreement between all
five cases means that Ri† is controlled by refraction of the NIW field by balanced
flow during this first stage.

However, at approximately t = 40 inertial periods, the results diverge and Ri† is
smaller for U0 = 0.4 m s−1 in both the Boussinesq and the three-component model.
It is conspicuous that in the two-component model with U0 = 0.4 m s−1, Ri† is
overestimated and stays close to the more linear U0 = 0.2 m s−1 results. At this
stage, the smallness of Ri† and thus small NIW vertical scales in the Boussinesq
and three-component models must be controlled by nonlinear NIW–2f0 interaction.
Strikingly, and despite the fact that they contain little instantaneous energy, 2f0
motions provide a crucial stepping stone through which NIW energy is transferred
to small vertical scales. The surprisingly accurate description of this process by the
three-component model suggests that it is controlled by the interaction of relatively
large-vertical-scale 2f0 motions with small-scale NIWs, which figures 2 and 3 show
to be well captured by the three-component model.

9. Discussion
We have developed a three-component model for the coupled evolution of NIWs,

QG flow and internal waves with frequency near 2f0. The three-component model
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FIGURE 9. (Colour online) The evolution of Ri† defined in (8.2) and normalized by its
initial value for the cases U0 = 0.4 m s−1 (black) and U0 = 0.2 m s−1 (blue or grey)
and in three models: Boussinesq (solid lines), three-component model (dashed lines) and
the two-component model with B 7→ 0 and thus no 2f0 (dashed-dotted lines). The inset
shows the numerical values of Ri† approaching the critical value Ri = 1/4 for the case
U0 = 0.4 m s−1 in the Boussinesq and three-component models. The metric Ri† is a
measure of the smallest vertical scales in the flow, whose evolution cannot be captured
without 2f0.

adds 2f0 dynamics to the two-component NIW–QG model derived by Xie & Vanneste
(2015), and thereby describes the prominent 2f0 vertical velocities and production of
small NIW vertical scales that numerical solutions of the Boussinesq equations show
to be important features of the coupled evolution of NIWs and balanced flow.

A striking prediction of both the three-component model and XV’s two-component
model is that forced oceanic NIWs extract energy from large-scale balanced flows.
Because this requires externally forced internal waves, XV call this mechanism
‘stimulated loss of balance’, distinguishing it from the spontaneous loss of balance
that occurs without external forcing of waves. Stimulated loss of balance acts even in
small-Rossby-number flows, and our numerical solutions suggest that energy transfer
to NIWs increases with the strength of the externally forced waves. Gertz & Straub
(2009) showed that stimulated loss of balance can result in a forward energy cascade
and dissipation of wind-driven gyres in an unstratified thin-aspect-ratio fluid. The
significance of stimulated loss of balance in real ocean flows is uncertain.

The three-component model connects the 2f0 generation mechanism identified
by Danioux & Klein (2008) with the YBJ-based near-inertial PSI mechanism of
Young et al. (2008). The form of the NIW–2f0 coupling implies a two-step cycle
for NIW energy. First, advection and refraction by balanced flow catalyses transfer
of NIW energy to 2f0 waves. These newly produced 2f0 waves have large, often
depth-spanning, vertical scales and propagate rapidly in the horizontal. Second,
a PSI-like interaction transfers energy from 2f0 waves back to the NIW field at
very small vertical scales. This two-step process provides a path from the large
scales of NIW forcing to the small scales of wave breaking and mixing. Advection
and refraction of NIWs by non-uniform QG flows leads to relatively small NIW
horizontal scales and thus plays a catalytic role in activating this path. Interestingly,
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the rapid horizontal and vertical propagation of the nascent 2f0 waves can excite
small-scale NIWs in regions remote from the initial NIW forcing. Two-dimensional
numerical solutions of both the three-component and Boussinesq models give tentative
confirmation of this mechanism.

The numerical comparison with the Boussinesq equations shows that the strengths
of the three-component model include its description of NIW refraction by balanced
flow, and prediction of both the phase and the amplitude of growing 2f0 waves at short
times. A weakness of the three-component model is the underestimation of the vertical
velocity and vertical kinetic energy under increasingly nonlinear conditions due to
its neglect of 3f0 and 4f0 frequency NIW harmonics. Despite this shortcoming, the
three-component model captures with surprising accuracy the long-time evolution of
the very smallest NIW vertical scales that result from nonlinear NIW–2f0 interaction.

The numerical comparison primarily tests the accuracy of NIW–2f0 dynamics in the
three-component model in a regime where refraction by APV-induced balanced flow
controls the large-scale NIW evolution. The magnitude of APV and the APV-induced
flow mean that our comparison does not isolate the existence and impact of balanced
flow induced by quadratic NIW terms in (1.7). In addition, because APV cannot
evolve from its initial condition in our two-dimensional scenario, the comparison
cannot explore dynamic NIW–QG interaction. A three-dimensional comparison of
three-component and Boussinesq dynamics is required to define the regimes of
validity of the three-component model in more realistic scenarios and to unravel the
effects of NIWs and their wave-induced balanced flow on the evolution of oceanic
QG motion.

The applicability of the three-component model to a particular part of the ocean can
be assessed using kinetic energy frequency spectra derived from long-term mooring
observations of horizontal velocity. Where non-wave flows of NIW scale have small
Rossby number, the three-component model well approximates the dynamics of any
motion with Eulerian frequencies near f0. In flows with relative vorticities near or
greater than f0, or under conditions of active wave breaking, the relevance of the
three-component model is uncertain. The ubiquitous appearance of a spectral peak
at f0 combined with the belief that large NIW-scale vortical flows are predominantly
balanced (Ferrari & Wunsch 2009) hints at, but does not confirm, the potentially
broad applicability of the three-component model. Such confirmation requires further
observations, such as the difficult simultaneous observation of large-scale balanced
vorticity and storm-driven NIW evolution. The applicability of the three-component
model to real flows is of consequence because prediction of the climatic evolution
of diapycnal mixing likely requires a firm understanding of NIW physics – a link
between the large and small scales of oceanic motion.
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Appendix A. The 2f0 equation
In this appendix, we outline the asymptotic and heuristic steps that lead to the 2f0

equation in (1.9) and (5.3).
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A.1. The 2f0 frequency forcing at first order
The vertically averaged time-fluctuating part of the first-order Boussinesq system in
(3.24)–(3.27) is

̂̃U1 t̃ + if0
̂̃U1 + 2p̃0s∗ =−e−2if0 t̃ Ĵ2, (A 1)

p̃0z̄ t̃ + ̂̃w0 N2 = 0, (A 2)̂̃U1s + ̂̃U∗1 s∗ + ̂̃w0 z̄ = 0, (A 3)

where the wavy part of the leading-order pressure p̃0 does not depend on the fast scale
z̃. The system above describes hydrostatic internal waves of general aspect ratio driven
by the 2f0 forcing on the right of (A 1).

A bit of wrangling with (A 1)–(A 3) leads to a single equation for the wavy part of
the leading-order pressure field:

∂ t̃ [ ∂2
t̃ L̄+ f 2

0 (1+ L̄)]p̃0 = 3if 3
0 (e
−2if0 t̃ Ĵ2s − e2if0 t̃ Ĵ ∗2s∗). (A 4)

Equation (A 4) is the hydrostatic internal wave equation forced at frequency 2f0.
Writing p̃0 as

p̃0 = if0[e−2if0 t̃ B(x, y, z̄, t̄)− e2if0 t̃ B∗(x, y, z̄, t̄)], (A 5)

and noting that (3.16a,b) implies

Ĵ2 = ∂s M̂2
z̃ , (A 6)

we find that B satisfies
if0(1− 3L̄)B=− 3

2∂
2
s M̂2

z̃ . (A 7)

A.2. Resonant and near-resonant NIW–2f0 interaction
Equation (A 7) describes forced oscillations with frequency 2f0. It cannot describe the
resonant and near-resonant generation and free propagation of 2f0 internal waves. Near-
resonant generation can be understood by projecting (A 7) onto vertical modes hn(z)
which satisfy

Lhn + κ2
n hn = 0 and h′n = 0 at top and bottom, (A 8a,b)

where the eigenvalue κn is the Rossby deformation wavenumber of mode n. If we look
for solutions of the form B∼ eikx+i`yhn(z), we find that (A 7) cannot be solved when

k2 + `2 = 3κ2
n . (A 9)

These combinations, which are circular slices of (k, `) space at each vertical mode, are
the wavenumber combinations that satisfy the linear internal wave dispersion relation
at frequency 2f0. Freely propagating 2f0 internal waves are generated when the NIW
forcing ∂2

s M̂2
z̃ has non-zero spectral content near these wavenumber combinations. The

generality of near-resonant 2f0 generation in NIW–balanced-flow interaction is evident
from the results in figure 1 and the simulations in Danioux et al. (2008).

As resonant generation is generic, we seek to describe it by modifying (A 7).
In particular, we need a term proportional to Bt̄ in (A 7) in order to describe
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time-dependent B generation and free near-2f0 propagation. We achieve this by
applying the map

∂t 7→−2if0 + ∂t̄ (A 10)

to (A 4) and re-deriving the 2f0 equation.
The scaling in § 2.1 implies that ∂t̄ is ε2 smaller than 2f0; thus, in applying (A 10)

to (A 4) we ignore the even smaller O(ε4) terms. Introducing (A 5) into the result then
yields

−(1− 11L̄)Bt̄ + 2if0(1− 3L̄)B=−3∂2
s M̂2

z . (A 11)

The leftmost term is ε2 smaller than (1 − 3L̄)B and only becomes important when
(1− 3L̄)B≈ 0. Moreover, the addition of any multiple of (1− 3L̄)Bt̄ does not reduce
the ‘accuracy’ of the approximation in (A 11).

We exploit this ambiguity to improve the already approximate form of (A 11).
Consider the exact vertical mode-n dispersion relation for linear hydrostatic internal
waves,

Σ =±f0

√
1+ k2

κ2
n

, (A 12)

where Σ(k, κn) is the hydrostatic internal wave frequency, k is the horizontal
wavenumber and κn is the horizontal wavenumber of the nth vertical mode. The
Taylor expansion of the positive root of Σ around k=√3κn with κn fixed is

Σ = 2f0 +
√

3f0

2κn
(k−√3κn)+ f0

16κ2
n

(k−√3κn)
2 + · · · . (A 13)

On the other hand, the approximate dispersion relation implied by (A 11) is found
by linearizing (A 11), projecting it onto vertical modes and proposing B∼ eikx−iσ t̄ so
that the frequency of B is 2f0 + σ . Algebra reveals that Σk = σk when k=√3κn and
Σ=2f0. As a consequence, the 2f0 approximation in (A 11) produces the correct group
velocity.

This feature is preserved under the addition of any multiple of (1− 3L̄)Bt̄ to (A 11).
We use this freedom to increase the accuracy of 2f0 linear dispersion in the three-
component model. Subtracting (9/2)(1− 3L̄)Bt̄ from (A 11), we obtain

(1+ 13L̄)Bt̄ + 4if0(1− 3L̄)B=−6∂2
s M̂2

z̃ . (A 14)

The approximate dispersion relation implied by (A 14) is

σ = 4f0
k2 − 3κ2

n

k2 + 13κ2
n

, (A 15)

which yields σkk = Σkk and means that (A 14) produces the correct near-2f0 group
velocity over a range of wavenumbers. Figure 10 compares the exact dispersion
relation with the approximate dispersion relations for both the 2f0 harmonic
component as well as the NIW component, demonstrating the accuracy of our
‘Padé’ approximation to the 2f0 dispersion relation. We use (A 14) to model the 2f0
component of flow in the three-component system. It should be noted also that such
a ‘Padé’ approximation can be applied in the same manner to the NIW equation.



836 G. L. Wagner and W. R. Young

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

 0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 0.5 1.0

0.05

 0.10

0.15

 0.20

10 2

0.08

0.06

0.04

0.02

0

–0.02

Fr
ac

 e
rr

or

Fr
ac

 e
rr

or

NIW

Exact

FIGURE 10. (Colour online) Comparison between the exact hydrostatic internal wave
dispersion relation and the approximate linear dispersion relations in the three-component
model. The thick black line traces the exact hydrostatic internal wave dispersion relation.
The green dash-dotted line is the approximate dispersion relation for the NIW component,
f0(1 + k2/2κ2

n ), obtained by linearizing (1.8). The blue dashed line is the approximate
dispersion relation for the 2f0 component implied by (1.9) and (A 14) and given by 2f0+σ
in (A 15). The insets show the fractional errors of the approximate NIW and 2f0 dispersion
relations.

A.3. Expressions for U1 and ŵ0

With p̃0 defined through B, we can calculate Ũ1. The vertically averaged horizontal
momentum equation iŝ̃U 1 t̃ + if0

̂̃U 1 = −2p̃0s∗ − e−2if0 t̃ Ĵ2, (A 16)

= −2if0e−2if0 t̃ Bs∗ + 2if0e2if0 t̃ B∗s∗ − e−2if0 t̃ ∂sM̂2
z , (A 17)

which means that ̂̃U 1 = e−2if0 t̃ (2Bs∗ − if−1
0 ∂sM̂2

z )+ 2
3 e2if0 t̃ B∗s∗ . (A 18)

The vertically averaged vertical velocity ŵ0 is obtained from (A 2),

ŵ0 =−2f 2
0

N2
(e−2if0 t̃ Bz̄ + e2if0 t̃ B∗z̄ ). (A 19)

With ŵ0 we can obtain the full expression for Ũ1 by solving (3.24), which yields

Ũ1 = e−2if0 t̃ (2Bs∗ − if−1
0 J2)+ 2

3
e2if0 t̃ B∗s∗ +

f0

N2
Mz̃z̃(e−3if0 t̃ Bz̄ − eif0 t̃ B∗z̄ ). (A 20)
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